diff --git a/README.md b/README.md
index c7e188324db89dc5809de0b5fe343631b40d8b8e..4966266b15c8a29cdc6c850f606da8ced19dabbf 100644
--- a/README.md
+++ b/README.md
@@ -6,6 +6,7 @@ https://www.biorxiv.org/content/10.1101/2024.05.23.595522v1
 All code uses the mackelab sbi package (https://github.com/sbi-dev/sbi) in a python 3.9 environment. 
 
 This directory contains:
+
     - The parameters (Simulations_modelparameters.csv) and resulting MEA features (Simulations_MEAfeatures.csv) of the 300,000 simulations used to train the NDE for the paper. Every row represents one simulation. In "Simulations_modelparameters", the columns in ascending order represent the parameters: 'noise', '$g_{Na}$', '$g_{K}$', '$g_{AHP}$', '$g_{AMPA}$', '$g_{NMDA}$', 'Conn%', r'$\tau_{D}$', 'U (STD)', 'U asyn'. In "Simulations_MEAfeatures", the columns in ascending order represent the MEA features: 'MFR', 'NBR', 'NBD', 'PSIB', '#FBs', 'CVIBI', 'mean CC', 'sd CC', 'mean ISI CC', 'sd ISI CC', 'ISI dist', 'mean ISI', 'sd ISI temp', 'sd isi elec', 'MAC'
 
     - The "TrainedNDE": the neural density estimator trained using the 300,000 simulations in the mackelab sbi package. This can be loaded in python to evaluate and obtain the posterior distribution as described in 'FindPosterior.py".