diff --git a/FindPosteriors.py b/FindPosteriors.py
index 7e45f449352beb8cf5247ce44f538de3ad59b8ea..29bc2bb95f14328428029396b119fc2b6d739c7c 100644
--- a/FindPosteriors.py
+++ b/FindPosteriors.py
@@ -4,34 +4,38 @@ from brian2 import *
 from sbi import utils as utils
 from sbi import analysis as analysis
 import matplotlib.pyplot as plt
-from Simulator import MEAnetSimulate, ComputeFeatures
-from MakeFigures import rasterplot, Marginaldiffplot
+from Simulator import MEAnetsimulate, compute_features
+from MakeFigures import rasterplot, marginaldiffplot
 from scipy.stats import ks_2samp
 
-numstats = 15        # Number of summary statistics
-numparams = 10       # Number of free parameters of the model
+example_dir = '../example_observations/'            # directory with the example observations
+
+num_stats = 15                                      # Number of summary statistics
+num_params = 10                                     # Number of free parameters of the model
 
 prior_min = [1.5, 0.5, 0.1, 0.5, 0.05, 0., 0.1, 150, 0.005, 0.]
 prior_max = [7, 2, 10, 10, 1, 1, 0.6, 1200, 0.3, 0.005]
 prior = utils.BoxUniform(low=torch.tensor(prior_min), high=torch.tensor(prior_max))
-priorlimits = [[1.5, 7], [0.5, 2], [0.1, 10], [0.5,  10], [0.05, 1], [0., 1], [0.1, 0.6], [150, 1200], [0.005, 0.3], [0., 0.005]]
-numparams = 10
-parlabels = ['noise', '$g_{Na}$', '$g_{K}$', '$g_{AHP}$', '$g_{AMPA}$', '$g_{NMDA}$', 'Conn%', r'$\tau_{D}$', 'U (STD)', 'U asyn']
-SSlabels = ['MFR', 'NBR', 'NBD', 'PSIB', '#FBs', 'CVIBI', 'mean CC', 'sd CC', 'mean ISI CC', 'sd ISI CC', 'ISI dist', 'mean ISI', 'sd ISI temp', 'sd isi elec', 'MAC']
-
-##  LOAD YOUR OWN EXPERIMENTAL DATA TO OBTAIN POSTERIOR
+prior_limits = [[1.5, 7], [0.5, 2], [0.1, 10], [0.5,  10], [0.05, 1], [0., 1], [0.1, 0.6], [150, 1200], [0.005, 0.3], 
+                [0., 0.005]]
+par_labels = ['noise', '$g_{Na}$', '$g_{K}$', '$g_{AHP}$', '$g_{AMPA}$', '$g_{NMDA}$', 'Conn%', r'$\tau_{D}$', 
+              'U (STD)', 'U asyn']
+SS_labels = ['MFR', 'NBR', 'NBD', 'PSIB', '#FBs', 'CVIBI', 'mean CC', 'sd CC', 'mean ISI CC', 'sd ISI CC', 'ISI dist', 
+             'mean ISI', 'sd ISI temp', 'sd isi elec', 'MAC']
+
+# LOAD YOUR OWN EXPERIMENTAL DATA TO INFER POSTERIOR
 # Load your own experimental data as APs (first column electrode number, second column AP timestamps):
-# location of your experimental files
-exp_fileloc = '/home/yourlocation'
+# location of your experimental file
+exp_fileloc = '/home/Nina/Documents/SBI_project/Output/Paper_Figures_ver1/APs_Fig_5_CACNClonesb3_sim0.csv'
 APs_obs = numpy.loadtxt(exp_fileloc, delimiter=",", dtype='int')
-recordtime = 165 * second   # how long the recording was
-fs = 10000              # sampling frequency used for the recording
+recordtime = 165 * second               # how long the recording was
+fs = 10000                              # sampling frequency used for the recording
 
-# plot the data
+# Plot the data
 rasterplot(APs_obs, "observation", 1/fs, 0*second, recordtime, 'black')
 
 # Calculate MEA features
-exp_MEAfeatures = ComputeFeatures(APs_obs, recordtime, 5 * second, fs)
+exp_MEAfeatures = compute_features(APs_obs, recordtime, 5 * second, fs)
 
 # Load the trainedNDE for the posterior
 with open('TrainedNDE', 'rb') as f:
@@ -45,48 +49,49 @@ modeparams = posterior.map()
 samples = posterior.sample((1000,))
 _ = analysis.pairplot(samples,
                       diag='kde',
-                      ticks = priorlimits,
-                      upper='kde', points = modeparams, points_colors=['#EF6F6C'],
+                      ticks=prior_limits,
+                      upper='kde', points=modeparams, points_colors=['#EF6F6C'],
                       points_offdiag={'markersize': 8},
-                      limits=priorlimits,
-                      figsize=(6,6), labels=parlabels)
+                      limits=prior_limits,
+                      figsize=(6, 6), labels=par_labels)
 plt.show()
 
-# run simulations with the mode of the posterior
-APs_sim, simtime, transient, fs = MEAnetSimulate(modeparams)
+# Run simulations with the mode of the posterior
+APs_sim, simtime, transient, fs = MEAnetsimulate(modeparams)
 rasterplot(APs_sim, "simulation", 1/fs, transient, simtime, 'black')
 
-## COMPARE TWO POSTERIORS
-# calculate or define the MEA features of your two observations
-observation1 = torch.tensor(torch.load('SCN_WTC_2410.pt'))
-posterior.set_default_x(observation1)                    # find the maxima of the posterior
+# COMPARE TWO POSTERIORS
+# Calculate or define the MEA features of your two observations
+observation1 = torch.tensor(torch.load(example_dir + 'SCN_WTC_2410.pt'))
+posterior.set_default_x(observation1)                    
 obs1_samples = posterior.sample((1000,))
-observation2 = torch.tensor(torch.load('SCN_GEFS_2410.pt'))
-posterior.set_default_x(observation2)                    # find the maxima of the posterior
+observation2 = torch.tensor(torch.load(example_dir + 'SCN_GEFS_2410.pt'))
+posterior.set_default_x(observation2)                    
 obs2_samples = posterior.sample((1000,))
 
-Marginaldiffplot(obs1_samples, obs2_samples, numparams, priorlimits, parlabels, 'WTC_GEFS_diff')
+marginaldiffplot(obs1_samples, obs2_samples, num_params, prior_limits, par_labels, 'WTC_GEFS_diff')
 
-#Perform Kolmogorov-Smirnov test to test differences between marginals
-observation1 = torch.tensor(torch.load('SCN_WTC_2410.pt'))
-posterior.set_default_x(observation1)                    # find the maxima of the posterior
-obs1_samples = posterior.sample((50,))
-observation2 = torch.tensor(torch.load('SCN_GEFS_2410.pt'))
-posterior.set_default_x(observation2)                    # find the maxima of the posterior
-obs2_samples = posterior.sample((50,))
+# Perform Kolmogorov-Smirnov test to test differences between marginals
+num_samples = 50                    # the number of samples drawn from the posterior to perform KS test
+observation1 = torch.tensor(torch.load(example_dir + 'SCN_WTC_2410.pt'))
+posterior.set_default_x(observation1)                 
+obs1_samples = posterior.sample((num_samples,))
+observation2 = torch.tensor(torch.load(example_dir + 'SCN_GEFS_2410.pt'))
+posterior.set_default_x(observation2)              
+obs2_samples = posterior.sample((num_samples,))
 
-KSs = np.zeros(numparams)
-Pvals = np.zeros(numparams)
-for i in range(numparams):
+KSs = np.zeros(num_params)
+Pvals = np.zeros(num_params)
+for i in range(num_params):
     par = i
-    KSs[i], Pvals[i] = ks_2samp(obs1_samples[:,par], obs2_samples[:,par])
-    print(parlabels[i])
+    KSs[i], Pvals[i] = ks_2samp(obs1_samples[:, par], obs2_samples[:, par])
+    print(par_labels[i])
     print("KS statistic:", KSs[i])
     print("P-value:", Pvals[i])
 
-##  FIND CONDITIONAL DISTRIBUTIONS AND PEARSON CORRELATIONS
-# show a conditional posterior distribution with one sample from the posterior
-observation = torch.tensor(torch.load('SCN_DS_2410.pt'))
+# FIND CONDITIONAL DISTRIBUTIONS AND PEARSON CORRELATIONS
+# Show a conditional posterior distribution with one sample from the posterior
+observation = torch.tensor(torch.load(example_dir + 'SCN_DS_2410.pt'))
 posterior.set_default_x(observation)
 condition = posterior.sample((1,))
 
@@ -95,31 +100,31 @@ _ = analysis.conditional_pairplot(
     condition=condition,
     diag=['kde'],
     upper=['kde'],
-    limits=priorlimits,
-    figsize=(6,6), labels=parlabels)
+    limits=prior_limits,
+    figsize=(6, 6), labels=par_labels)
 plt.show()
 
-# Compute the correlation coefficient of every pair of parameters for every posterior sample
-numconds = 50
-corrcoefs = np.zeros((numconds, 100))
-for i in range (numconds):
+# Compute the correlation coefficient of every pair of parameters for num_conds conditional distributions
+num_conds = 50                          # of how many conditional distributions you want to compute the CCs
+corrcoefs = np.zeros((num_conds, 100))
+for i in range(num_conds):
     condition = posterior.sample((1,))
     cond_coeff_mat = analysis.conditional_corrcoeff(
         density=posterior,
         condition=condition,
-        limits=torch.tensor(priorlimits),
+        limits=torch.tensor(prior_limits),
     )
-    corrcoefs[i,:] = np.array(torch.flatten(cond_coeff_mat))
+    corrcoefs[i, :] = np.array(torch.flatten(cond_coeff_mat))
 
-#take the average correlation coefficients
+# Take the average correlation coefficients
 average_corrcoefs = torch.tensor(np.mean(corrcoefs, axis=0))
 average_corrcoefs_pl = torch.unflatten(average_corrcoefs, 0, (10, 10))
 
-#Construct the correlation matrix
+# Construct the correlation matrix of the average correlation coefficients
 fig, ax = plt.subplots(1, 1, figsize=(3, 3))
 im = plt.imshow(average_corrcoefs_pl, clim=[-0.6, 0.6], cmap="RdBu")
-ax.set_xticks(range(0,10))
-ax.set_xticklabels(parlabels, rotation = 90)
-ax.set_yticks(range(0,10), parlabels)
+ax.set_xticks(range(0, 10))
+ax.set_xticklabels(par_labels, rotation=90)
+ax.set_yticks(range(0, 10), par_labels)
 _ = fig.colorbar(im)
 plt.show()