The QuestionMark
Probabilistic Benchmark

Welcome to the QuestionMark manual. This document provides additional details on
the benchmark, as well as a roadmap on how to use it and adapt it for own use. The
scientific substantiation of this benchmark can be found in the accompanying thesis’.

z |

-2 MARK

Figure A.1: The QuestionMark logo

As there is no standard available for benchmarking probabilistic databases, Question-
Mark aims to cover a wide range of aspects of the tested probabilistic database man-
agement system (DBMS). This benchmark provides a convenient way to test various
probabilistic database management systems and get insights on their performance.
Since the queries provided in this benchmark are written in a pseudocode like lan-
guage, queries can easily be translated to any probabilistic query dialect. Additionally,
it provides clear guidance on how the parameters can be adapted to approach any real-
world application as close as possible.

For the benchmark, two Python programs have been developed. Both these programs
- The Dataset Generator and The Probabilistic Benchmark - need to be run to execute
the benchmark. Section A.1 describes the dataset generator. Section A.2 describes the

'Zandbergen, N. (2023) QuestionMark: Designing a benchmark for probabilistic databases. M.Sc.
Thesis, University of Twente.

75

76 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

benchmark. The step by step instructions provided in this manual can also be found
in MANUAL.md in the respective python program. This benchmark natively supports
the probabilistic database management systems MayBMS and DuBio. Running the
benchmark with any other probabilistic DMBS requires manual adaptation of these
programs. More details on how to do this are provided in the QuestionMark Python
programs and in Section A.6.

If you want to use this benchmark, allow for a total running time of three to eight
hours, depending on the dataset size and included uncertainty. The benchmarking
procedure consists of the following phases:

1. (approx. 60 minutes). Reading through this manual and understanding the
product.

2. (30 to 180 minutes). Running QuestionMark: The Dataset Generator.
3. (30 to 90 minutes). Running QuestionMark: The Probabilistic Benchmark.

4. (approx. 60 minutes). Digesting the results and drawing conclusions.

When adding a new non-supported DBMS, the implementation of changes require
an additional fifteen hours. Including a new non-supported non-PostgreSQL based
DBMS, another additional fifteen hours should be taken into account.

A.l. QuestionMark: The Dataset Generator

QuestionMark: The Dataset Generator is a Python program that generates the dataset
required for running QuestionMark: The Probabilistic Benchmark. This program can
be downloaded from

https://gitlab.utwente.nl/s1981951/prob-matcher/

This dataset generator prepares the dataset required for running the benchmark test.
During the dataset generation phase, a dataset is produced that approaches the real-
world scenario for which this benchmark is run. For this, parameters can be tuned.
This program follows the general product matching workflow, which is as follows.

1. Data Preparation. The data is standardised and cleaned. A uniform data struc-
ture is applied.

2. Search Space Reduction. Since the time needed for evaluating all possible com-
binations grows exponentially with the dataset size, the search space for possible
matches needs to be reduced to allow for efficient matching.

3. Attribute Value Matching. The similarity of the remaining data tuples is de-
termined using a syntactic and semantic means, which produces a comparison
vector per data attribute.

4. Classification. A decision model then determines the similarity score of a data
tuple. This score is compared to the set thresholds to determine whether it is a
matching tuple, possibly matching tuple, or non-matching tuple.

5. Verification. The performance of the applied product matching algorithm can
be verified using standard performance metrics.

A.1l. QuestionMark: The Dataset Generator 77

A.1.1. The Dataset Generator Roadmap

After having downloaded the program from GitLab, the generation of the probabilis-
tic dataset can begin. When completing the listed steps, the dataset required to run
QuestionMark: The Probabilistic Benchmark is obtained.

1. Downloading the WDC datasets. First, the base dataset should be downloaded.
For additional details on this dataset, see Section A.1.2. To include this dataset
in the program, create an empty folder datasets in the main project repository.
Next, go to the WDC dataset website, scroll to the bottom of the page and down-
load offers_corpus_english _v2.json.gz and all_gs. json.gz. Include these
in the empty datasets folder. If desired, you could also download the samples
from the WDC dataset website to get an impression of the dataset.

2. Preparing the dataset generator. To create a dataset that approaches a given
real-world scenario as much as possible, first the parameters of the generator
need to be set. For an explanation on these parameters, see Section A.1.3. When
these parameters are set, a database connection should be established. The
database of choise should be running and accepting connections. To connect
QuestionMark: The Dataset Generator to your database, create a new file called
database.ini and fill in the credentials according to the defined structure in
database.ini.tmpl. QuestionMark: The Probabilistic Benchmark is created
with PostgreSQL-based Database Management Systems in mind. In case the
DBMS you want to benchmark is not PostgreSQL-based, please see Section A.6.2.
If you want to benchmark a system other than DuBio or MayBMS, please see Sec-
tion A.6.1.

3. Running QuestionMark: The Dataset Generator. Once the preparations are
done, the dataset generation can begin. To run the benchmark, go to manual.py
and run the script.

4. What the benchmark does. During the process of generating the dataset, several
phases will be passed. If it is indicated that a smaller dataset will be used, this
new dataset is produced first. To do this, a pseudo-random selection of offers
is chosen from the dataset. This ensures that the same dataset will be produced
each time the benchmark is run on a specific size. Next, this dataset is sorted
and a dictionary is created for easy lookup. The offers present in the dataset are
then put in blocks. For this, two blocking algorithms are available. First creating
blocks reduces the time required to evaluate if offers should be put in the same
cluster. More information on this process can be found in Section A.1.4. After
the blocks are created, all offers in a block are matched and provided with a prob-
ability score. This probability indicates the likelihood that the offer belongs in
a cluster, and whether its attributes are likely the correct ones. More informa-
tion on this process can be found in Section A.1.5. When the clusters are created,
a database representation is created and the offers are added to a probabilistic
DBMS. Finally, some preparatory queries are run.

5. Continue with benchmarking. The dataset is prepared! Go to QuestionMark:
The Probabilistic Benchmark to continue with benchmarking. Optionally, per-
formance tests could be run before continuing the benchmarking process.

78 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

6. Running performance tests. QuestionMark: The Dataset Generator also comes
with a performance evaluator. This evaluator can aid in setting the parameters
correctly, such that the produced dataset approaches that of the real-world as
closely as possible. Several performance tests have already been run. Open
performance/performance.txt to get insights into the behaviour of the param-
eters and the performance of the implemented algorithms. To run the per-
formance tests, set the performance parameter to true and run the script in
manual . py again.

A.1.2. WDC Product Data Corpus and Gold Standard

This program digests the WDC Product Data Corpus and Gold Standard for Large-
Scale Product Matching, Version 2.0 to generate a probabilistic dataset from it. The
WDC dataset is a large public training dataset for product matching. It is produced
by extracting schema.org product descriptions from 79 thousand websites, which pro-
vides 26 million product offers. Besides the full dataset, an English language subset is
offered. This subset consists of 16 million product offers. This dataset is provided with
a clustering. The 16 million product offers in the English subset are categorized in 10
million clusters. Each cluster contains offers of the same product found on different
websites. There are roughly 8.5 million clusters with size 1, one million clusters with
size 2, and 400.000 clusters with size 3 or 4. Clusters of a size greater than 80 are
filtered out of the dataset, as these are likely noise.

For this benchmark, an adaptation of the English subset is used. The dataset was
adapted to include a probabilistic clustering. More information on the dataset and
details on why this dataset was chosen can also be found in the accompanying thesis.

A.1.3. Dataset Generator Parameters

During the dataset generation phase, there are multiple parameters that can be
tweaked. The different parameters and their effect on the resulting dataset are listed
below. In order to fit the benchmark to the requirements of a specific application, it
should be tailored to represent this real-world scenario as closely as possible. This
can be done by tweaking the various parameters of this benchmark. The parameters
‘dataset size’ and “‘upper phi and lower phi’ have a high influence in the extent to which
the produced dataset resembles the real-world application for which this benchmark
test is run.

« DBMS. Determines into which database management system the generated
dataset should be loaded and what preparatory queries need to be run.

 Dataset size. Determines the amount of offers included in the dataset. A per-
centage of the dataset can be determined to two decimal places. The offers for
the new smaller dataset are pseudo-randomly chosen, so that the same dataset
is returned for multiple runs. This ensures reproducibility of the results. The
full dataset contains 16 451 499 offers. The smallest dataset that can be gener-
ated is 0.01% of the full dataset, which produces an initial dataset of 1653 offers.
Choose this value to generate a dataset with a size similar to that of the dataset
being digested by the real-world application.

A.1l. QuestionMark: The Dataset Generator 79

« Whole clusters. Determines whether the offers chosen from the larger dataset
to include in the new smaller dataset are pulled from entire clusters or not. In-
cluding entire clusters increases the uncertainty of the data.

« Word distance measure. Determines the manner in which the distance between
two words or sentences is calculated. This measure is used during the blocking
phase on the attributes determined as Blocking Key Values and on all suitable
attributes during the matching phase. The implemented distance measures are
Levenshtein, Jaro, Jaro-Winkler, Hamming and Jaccard.

 Blocking key values. Determines the attributes that are included to determine
the similarity of two offers during the blocking phase. Including more attributes
provides a better blocking performance, but at the cost of a higher runtime.

 Blocking similarity threshold. Value between 0 and 1 that represents the dis-
tance between two offers. Evaluated offers with a distance lower than the thresh-
old are included in the same block.

 Blocking window size. Determines the size of the sliding window. Within a
window, the distance between the first and last offer is determined. This value
influences the runtime.

« Maximum block size. Poses a restriction on the block size. Increasing this value
improves the performance. As the matching phase includes a calculation with
factorial time complexity, this size should not exceed six. Five is advised.

« Matching attributes. Determines the attributes that are used to obtain the dis-
tance between two offers during the matching phase. Including more attributes
improves the performance, but increases the runtime.

» Matching attribute weights. Determines the weight of each attribute to calcu-
late the final distance score. This can be tweaked to improve the performance.
It has no effect on the runtime.

« Upper phi and Lower phi. Determines the upper and lower threshold of the dis-
tance measure. If the distance between two offers is greater than the upper phi,
the two offers are certainly not the same product. If the distance is smaller than
the lower phi, the two offers are certainly the same. Increasing the gap between
the values ensures less false matches or non-matches, but increases the compu-
tational complexity in later phases and during querying. A smaller gap can be
used to artificially reduce the uncertainty in the dataset. This value should be
carefully chosen, as this influences to what extent the produced dataset imitates
the data being digested by the real-world application.

A.1.4. Blocking Algoritm

To obtain a time-efficient product matching, the search space for matching pairs
should be reduced. Disregarding this step results in quadratic time complexity dur-
ing the product matching phase. Having 16 million products in the dataset, this step is
thus essential for a time-efficient product matching. For this step, filtering or blocking
can be used. QuestionMark: The Dataset Generator makes use of a blocking algoritm.

A selection of two Rule-Based Blocking techniques was implemented on the dataset

80 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

to verify which algorithm performed best. These are Incrementally-Adaptive Sorted
Neighborhood (ASN) and Improved Suffix Array (ISA) Blocking. Tests executed using
the implemented performance evaluator indicate that ASN is the best blocking algo-
rithm for the dataset used. The ISA algoritm is still available for use.

The ASN blocking algoritm works by sliding a window to roughly determine what of-
fers are possible matches. For this, a sorted dataset is required. During each iteration
of the algoritm, a block is created. The sliding window is placed at the first offer from
the sorted list that is not yet in a block. When the start of the window is set, the en-
largement phase is entered. During this phase, the window will iteratively increase in
size. This is a fixed increase. After each iteration, the blocking algorithm determines
the similarity score of the first and last offer in the window. If the distance between
the two offers is smaller than the set threshold, the window is enlarged and a new simi-
larity score is determined. If the distance is higher, the retrenchment phase is entered.
During the retrenchment phase, the sliding window will decrease one offer in size and
calculate the similarity score between the first offer in the window and the new last
offer. Once the similarity score rises above the threshold, the block is created.

A.15. Matching Algoritm

During this phase, either an algorithm based approach or a machine learning based
approach could be used. When product matching with either approach, the matching
can be performed only on the product title or on all available information, i.e. includ-
ing the product attributes. Only using the product title provides simplicity and speed,
but at the cost of a lower precision.

For QuestionMark: The Dataset Generator, the Attribute-Based Entity Resolution ap-
proach is used as the foundation of the implementation. For this research, a compari-
son vector is generated from all attributes of an offer. Within each block, all possible
offer combinations are generated and the distance between these offers is then pro-
vided by the vector. For simplicity, this vector is combined to a single distance score.
The weight of each attribute for this final score is adaptable.

As the benchmark designed in this research is based on probabilistic data, an addi-
tional layer had to be build on top of the basic algorithm to include a probabilistic
model in the final clustering. The creation of the various probabilistic clusters is based
on the possible worlds model. For each block, a matching graph is created and the
matching score of each edge is evaluated. Blocks containing only a single offer are
always true, so are submitted to a cluster directly. When a block contains multiple
offers, their matching score is evaluated. Here exists three possibilities:

« the matching score of their edges all lie above the upper threshold;
« the matching score of their edges all lie below the lower threshold;

« there are one or multiple edges between the two thresholds.

In the first case, the cluster is certain; there is only one possible world. In this case
the full block becomes a new cluster. There does exist uncertainty between the correct
value of the attributes, as these are likely different. In the second case, the cluster
is also certain, as all offers are certainly different. In this case, each offer is put in a

A.2. QuestionMark: The Probabilistic Benchmark 81

separate cluster. In the final case, world graphs should be constructed of the possible
worlds. The amount of possible worlds created equals 2" where n equals the amount
of offers connected by an uncertain edge. When these world graphs are created, the
inconsistent worlds are removed and the remaining worlds are included as different
options for the same cluster. If an offer is certainly present in all worlds, this offer
is added later to all generated world graphs. If an offer is certainly not present in all
worlds, a separate cluster is created.

For the creation of the possible worlds, a naive implementation is used based on the
theory presented in the accompanying thesis. Because of that, the space complexity
for the creation of the possible worlds is factorial. This imposes a limit on the block
size that can be digested by this algorithm. This imposes a maximum of six offers per
block.

A.2. QuestionMark: The Probabilistic Benchmark

QuestionMark: The Probabilistic Benchmark is a Python program that runs a bench-
mark test for any probabilistic database management system. This program can be
downloaded from

https://gitlab.utwente.nl/s1981951/probabilistic-benchmark

This benchmark uses the dataset generated using QuestionMark: The Dataset Gener-
ator. Again, if a DBMS will be used that is not natively supported, the program needs
to be adapted to allow its support. For this, see Section A.6.

A.2.1. The Probabilistic Benchmark Roadmap

After having downloaded the program from GitLab, the benchmark execution can be-
gin. To properly run the benchmark, the following steps need to be followed. It is
assumed that the process of QuestionMark: The Dataset Generator has been finished
successfully and the dataset is available in a Database Management System that is
accepting connections.

1. Prepare the benchmark. To connect to the dataset generated by QuestionMark:
The Dataset Generator, create a file called database.ini and fill enter the cre-
dentials according to the defined structure in database.ini.tmpl. Then, the pa-
rameters for running the benchmark must be set. For an explanation on these
parameters, see Section A.2.2. Again, if a new DBMS or a non-PostgreSQL based
DBMS will be benchmarked, please follow the steps listed in Section A.6. To test
the connection to the database, set the parameter test to True. Remember to
set this value to False before running the benchmark test.

2. Run the benchmark. The benchmark is now fully prepared to be run. To run
the benchmark and obtain the results, go to manual . py and run the script. For
additional details on the queries included in the benchmark, see Section A.3.

3. Reading the results. When the benchmark execution is finished, the results can
be viewed. The benchmark results are stored in QM_metric_ results.txt and
QM_query_results.txt. Both files provide insights into the performance of the
tested benchmark. For more instructions on how to digest and interpret the

82 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

results, see Section A.4.

A.2.2. Benchmark Parameters

During the benchmarking process, there are also parameters that can be tweaked. The
parameters during this phase are mostly related to the DBMS used and the function-
ality coverage of the benchmark.

« DBMS. Determines the database management system that will be used for the
execution of the benchmark. Additional systems can be added when support for
them is also added to the benchmark program.

o Iterations. Denotes the amount of times a query is run to obtain a runtime av-
erage from the queries. This is a global variable that is used for all queries. In-
creasing this number will provide a more precise outcome of the average run
time, but at the cost of a longer benchmark execution time. The total amount of
iterations is always +1 to create a warm start.

« Show Query Plan. Boolean value. If true, the query plan for each query is also
provided with the benchmark result. Enabling this variable does not influence
the execution time of the queries.

« Timeout. Ensures that queries that take too long to return an answer will be
aborted. Once a query times out, this will be noted in the benchmark result
and the next query is started. The current implementation abruptly stops the
benchmark execution.

 Queries. Alist that contains all queries from the benchmark. Depending on the
goal of the benchmark run, queries that are not relevant can be removed from
the benchmark run. Removing queries lowers the total time required to run
the benchmark and focuses the results to what is important. The benchmark
can also be run in several iterations, as to create several smaller, more focused
benchmark results.

A.3. Benchmark Queries

This section discusses the queries included in the benchmark. The list of queries in-
cluded in the QuestionMark benchmark can be found in Appendix A.7.

A.3.1. Queries

QuestionMark: The Probabilistic Benchmark offers a range of queries that can be used
to test various types of systems. The queries are selected to cover the diverse possibil-
ities of the dataset, but also include functionalities that are key to some more well-
known probabilistic database management systems. The queries are sub-divided into
queries that provide insight into the dataset, probabilistic queries that could be run
more frequently and insert-update-delete queries. The table below provides a quick
overview of the included queries.

A.3. Benchmark Queries 83

test1
insight 1

insight 2
insight 3
insight 4
insight 5

insight 6
probabilistic 1
probabilistic 2
probabilistic 3
probabilistic 4
probabilistic 5

probabilistic 6

insert update delete 1
insert update delete 2
insert update delete 3
insert update delete 4
insert update delete 5

Simple query to test the connection.

Retrieves the full dataset, gain insight in data structure and
load handling,.

Provides insight into the dataset and probability handling.
Provides insight into the distribution of cluster volumes.
Gets the percentage of certain clusters.

Gets the id and probability of the offers with a specific vari-
able value or sentence.

Gets the average probability of the dataset.

Gets offers with the probability of their occurrence.

Gets the expected count of the categories.

Gets the expected sum of the product ids per cluster.

Gets the sentence and probability per category.

Returns the most probable offer that is related to a specified
string.

Returns all offers containing a specified string with a high
uncertainty so these can be classified by human inspection.
Inserting a single row.

Inserting bulk.

Updates uncertainty.

Removes uncertainty.

Deletes a cluster.

A.3.2. Altering Queries

The queries presented in this benchmark are already translated and included in Ques-
tionMark: The Probabilistic Benchmark in the dialects of DuBio and MayBMS. Please
note that these query implementations are written with a dataset of 0.01% size. When
producing a dataset of a different size, it could happen that the clusters used in those
queries are not present in the produced dataset. It is thus of importance to always
check the queries before running the benchmark. The following queries require spe-

cial attention:

« Query insight 5. This query requires a specific variable or sentence to be defined.
You could either define one that does not exist in the database, or choose one that

does exist.

» Queries probabilistic 5 and probabilistic 6. This query uses pattern matching
to obtain a selection of offers that satisfy that pattern. It is advised to query for
anything that exists in the dataset.

 Query insert, update, delete 3. This query requires a specific cluster to be de-
fined. Seek for any cluster of size four. Include its ID in the query and change
the probability with variables accordingly.

» Query insert, update, delete 4. This query should also be run on any cluster of
size four. Include the ID of each offer present in that cluster in one of the four
queries. Include the cluster ID in the probability variables.

« Query insert, update, delete 5. This query removes a cluster. Search for a cluster

84 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

with a sufficiently large size and include its ID. With the current limitations, a
cluster with the largest size is advised.

 Queries timing out. During the benchmarking, it could happen that queries take
too long to return an answer. In that case, the query is timed out. To verify
whether the functionality of the query is supported, change the query to run on
the ’part’ table. This part table contains a small portion of the dataset. If the
query still times out with this table, it could be worthwhile to decrease the size
of this table even further. To do this, go to QuestionMark: The Dataset Gen-
erator and open database_filler_ [DBMS].py. Then reduce the value in LIMIT
FLOOR() in the first query of prep_queries.

« Queries raising exceptions. During the benchmarking, it could also happen
that queries throw errors. When any query raises the exception invalid
memory alloc request size 1073741824 or Ran out of memory retrieving
query results, it can also be worthwhile to run the query on the ’part’ table.
Most likely, reducing the dataset size that the query needs to digest removes
this specific error. This verifies whether the functionalities in the query are sup-
ported by the system or not. It is worthwhile so remain critical when errors are
thrown, sometimes a workaround can be found to still find a fix. Another option
is to run the query on a database tool, as it could be that the DBMS cannot handle
some requests from psycopg?2.

A.4. Produced Results

After running QuestionMark: The Probabilistic Benchmark it is time to analyse the
produced results. The benchmark provides information about the benchmark through
the following metrics:

« The brevity of the query dialect.

« The query functionality coverage.
« The runtime of the queries.
 The probabilistic data overhead.

 The user friendliness of the system.

The benchmark produces two files when run: QM metrics results.txt and
QM_query_results.txt. These two files contain the raw metric values that can be di-
gested to obtain valuable information from. The metrics provide information on the
effectiveness, efficiency and appeal of the tested software. QM_metrics_results.txt
provides the raw data of four metrics in the main results part and provides an overview
of all errors thrown while running the benchmark. If no errors were thrown, nothing
will be printed and only the main part is visible. In QM_query_results.txt, all queries,
their results, and their execution time are shown.

A.41. Metrics
The benchmark thus produces data for five metrics. This section provides additional
details on each of these metrics.

A.4. Produced Results 85

Brevity of the query dialect. This metric is determined by the total amount of
characters needed for all queries and gives insights into the succinctness of the query
language. A more succinct query dialect often requires less time to write queries with
and is often easier to understand. This metric value is obtained by iterating over all
queries and adding their character count. Spaces are removed from the calculation.
Optionally, characters can be removed from specific queries. For example in query
IUD_1_rollback offers are added to the database. As the data that represents the offer
is not indicative of the complexity of the query language, the amount of characters used
for that representation is subtracted from the total character count for that query.

Query functionality coverage. This metric provides insight into the functional-
ity coverage of the database system and is determined by multiple sub-metrics. When
running the queries to obtain their results and runtime, it can happen that a specific
functionality is not supported or the database system cannot handle the load required
to execute the query. In these cases, the system returns an error. The error raised
during execution are stored and printed as the query result. After the benchmark ex-
ecution has finished, an overview table is created that indicates what queries finished
execution and which threw an error. The percentage of successful queries is then also
determined. For each query that threw an error, it also indicates what query function-
ality might be lacking. In each case, a critical look is needed to verify whether the error
is thrown due to an actual lack of functionality support or due to another reason, for
example a typo. With the gathered knowledge, the functionality coverage table can
be manually filled in. In this table, a distinction is made between functionality that
is natively supported and functionality that can be implemented with a workaround
method

Runtime of queries. This metric provides insight into the speed of query execution.
Alower runtime is required to obtain higher query throughput rates and improves the
flow of business processes relying on the query results. This metric is also obtained
by a combination of sub-metrics. To obtain the runtime of a query, the PostgreSQL
EXPLAIN ANALYSE statement is used. This statement returns the execution plan of var-
ious queries or statements and tracks its runtime. When available, it differentiates
between the planning time and execution time of a query. In this distinction is not
supported by the DBMS, only a total runtime is returned. For each query, the aver-
age runtime over the specified iterations is printed. Each query is run with a warm
start. After all benchmark queries have run, a total average planning time and execu-
tion time, or total average runtime is calculated. This is the sum of all time averages
of all queries. The total time provides a quick idea of the speed of the tested DBMS.
For each application scenario, the acceptable runtime of a query differs. It is thus ad-
vised to verify the significance of the queries and per query determine the acceptable
runtime.

Probabilistic data overhead. This metric represents the additional storage space
required to store the probabilistic representation of the data. When processing large
volumes of data, needing additional storage space to store the probabilistic represen-
tation of the data could get costly. As each probabilistic DBMS stores their probabilis-
tic representation in a unique way, the probabilistic data overload is calculated for
each DBMS differently. For both systems, the storage space used is determined by

86 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

the pg_size_pretty statement of PostgreSQL. For DuBio, the overhead percentage is
determined using the following calculation:

t dictq
sentence + dictionary < 100

of fers + dictionary

Here, sentence is the size _sentence column in the offers table, dictionary is the size
of the dict table, and offers is the size of the of fers table.

For MayBMS, the following calculation is used to determine the overhead percentage:

setup % (1 __ distinct ids count) 4 (Off@’f‘S o Setup)

ids count

of fers

Here, setup is the size of the offers_setup table, distinct_ids_ count is the count of
all distinct values of the id column in the offers table, ids _count is the count of all
values of the id column in the of fers table, and offers is the size of the offers table.

x 100

The calculation for MayBMS is a bit more complex, as MayBMS does not create a com-
pact representation of the probability space over a single offer. Because of that, data
duplication is created in the offers table. The overhead that this duplication creates is
determined by counting the id values.

User friendliness. User friendliness is another metric that is composed from sev-
eral sub-metrics. As user friendliness is something of a more personal taste and can-
not be measured from a benchmark run, all sub-metrics are in the form of statements
that should be rated on a scale from 1 to 5, 1 meaning that the statement is not true,
an 5 meaning that it is very much true. The following aspects should be evaluated to
determine a final user friendliness score of the system:

[1,2,3,4,5] | The software is well documented.

[1,2,3,4,5] | The software was easy to work with.

[1,2,3,4,5] | Wehave sufficient in-house expertise to work well with the software.
[1,2,3,4,5] |Iam satisfied with the monetary expenses that need to be made for
running the software.

[1,2,3,4,5] | The software has a support service.

A.5. Digesting the Results

To digest the raw metrics provided by the benchmark and obtain useful information
from them, the benchmark performance is categorised in terms of its effectiveness,
efficiency and appeal. please follow the instructions below to digest the raw results
and gain insights into the performance of the system.

A.5.1. Effectiveness

The effectiveness of the software relates to the quality of fulfilling the purpose. To
obtain a complete picture about the effectiveness of the tested software, both gener-
ated files should be considered. To obtain a global picture on the effectiveness of the

A.5. Digesting the Results 87

software, open QM_metrics_results.txt. Here, the metric ‘percentage of successful
queries’ is of importance. Ideally, this value will be 100%. If this is not the case, errors
have been thrown during the benchmarking process. These errors are displayed at the
bottom of the file. For each error, verify if it is thrown due to a lack of functionality
support, or due to other reasons, such as programming or memory errors. If the error
is due to any of the other reasons, try to eliminate these and run the query again. Keep
track of the following information when altering queries that have thrown an error:

Fix log #

Query that raised an exception:
Prior adaptations done on the query:
Exception raised by the query:

Suspected cause of the exception:

Implemented fix:

If any error cannot be fixed, the functionality that is required is lacking in the tested
software. In the errors overview, a list of possible functionality gaps is listed below
each error. Verify if the error is caused by any of these and note the missing func-
tionality. With this, the coverage of query functionality can be identified. Below is a
list of the functionalities that are identified. This list can be expanded when different
functionalities are of importance.

As a final step, open QM_query_results.txt and verify the results returned by the
queries. This step is optional, as there is no truth table provided with the benchmark.
If anything strange is shown, verify if the tested software is performing badly.

| Native | Possible | Functionality

1 [1] [1] Support of most recent deterministic DBMS queries
2 [] [] Offering a compact representation of the present uncer-
tainty

Get the probability of an offer

Get the probability of a composed result

Apply aggregate functions on probabilities
Filtering on probability

Get the expected count

Get the expected sum

Get the most probable answer

Verify if a specific possible world exists

Verify if a record is certain

Updating the uncertainty of an offer

Repair the probability space after addition, update or
deletion of offers

Any anomalities discovered during benchmarking

HoE = 2O 00N OO B~ W
W N = O

el e e e e e e e B e W e B
e e e e e e e e e
e —
e e e e e e o b e e

[y
N

88 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

A.5.2. Efficiency

The efficiency of the software relates to its use of resources and execution speed. To ob-
tain a complete picture of the efficiency of the testes software, several metrics should
be evaluated. The most prominent efficiency metric is the speed of the tested soft-
ware. The speed of the software can be collected by both the total average execution
time and the time per query. The desired speed is fully dependent on your require-
ments. If specific types of operations are most important for the real-world software,
open QM_query_results.txt and verify if the queries containing that functionality
have an acceptable execution time. A visual representation of the execution times
of the queries can be found in results/graphs/QM_graph_runtime.png. To ensure a
clear presentation of the visual results, it might be beneficial to run the benchmark
over several subsets of queries. One could, for example, make a separate fun for all
insert, update and delete statements, or remove all queries with a significantly higher
execution time.

Another indication of efficiency is the amount of characters needed for the queries.
It is your decision if this metric is of importance. This metric is also related to the
appeal of the software. Query dialects that require more characters are possibly
more difficult to understand and possibly require more time to define queries with.
For this sub-metric, also a visual representation is included. This can be found in
results/graphs/QM_graph runtime.png. Again, if the produced graph is hard to read
it might be beneficial to run the benchmark over several query subsets.

A final indication of efficiency is the additional storage space required to store the
probabilistic representation of the data. If storage is sparse, having a system that re-
quires less storage for the probabilistic representation is better. Please verify what
overhead is acceptable. This sub-metric is only indicated as a single percentage in
QM_metrics_results.txt

A.5.3. Appeal

The appeal of the software relates to the human element, including the satisfaction of
use. Whether the tested software appeals to the company is thus more about personal
preference. To guide with answering the question if the tested software is appealing,
a list of statements is defined. The score given to these statements define the appeal
score of the software. Rate each of the statements below with a score from1to5. A1
means that the statement does not align with your personal opinion on the software,
so that you strongly disagree with the statement, whereas 5 means that the statement
is very much true, so you strongly agree. Scoring a 3 provides a neutral opinion.

[1,2,3,4,5] | The software is well documented.

[1,2,3,4,5] | The software was easy to work with.

[1,2,3,4,5] | Wehave sufficient in-house expertise to work well with the software.
[1,2,3,4,5] |Iam satisfied with the monetary expenses that need to be made for
running the software.

[1, 2,3, 4,5] | The software has a support service.

A.6. Including Other Database Management Systems 89

A.5.4. Drawing Conclusions

After information on each metric is collected, conclusions can be drawn from this
newly acquired information. As a first step, verify if the software supports all function-
alities required. A software that cannot run your key processes is practically useless. If
this is satisfied, the importance of each metric should be identified. When all metrics
are ordered by their importance, a better picture of the suitability of the software can
be drawn. Be critical of your requirements and if the tested software fits these well
enough. If two systems are benchmarked, compare their results.

A.6. Including Other Database Management Systems

The QuestionMark benchmark for probabilistic databases was designed with general-
isability in mind. Hence why all benchmark queries are also provided in a pseudocode
like language. To test the system, two promising probabilistic database management
systems are already supported in the system; MayBMS and DuBio. Both these sys-
tems are based on PostgreSQL, hence why the QuestionMark Python programs are
also written with PostgreSQL based systems in mind. If you want to benchmark an-
other probabilistic database system, both Python programs need to be adapted to fit
the new system. For this, additional changes are required when implementing a new
non-PostgreSQL based system.

A.6.1. Including any new Probabilistic DBMS

When including a new PostgreSQL based DMBS, no alterations need to be made to the
existing codebase. However, new functions should be defined based on the existing
codebase.

As each probabilistic DBMS has its own unique structure when it comes to represent-
ing the probabilities and/or sentences of the possible worlds, the dataset generation
should be adapted to fit the requirements of the new systems. For this, new functions
should be defined. For ease, the placeholder NAME will be used, which denotes the
name of the newly added DBMS. The following additions should be made to Question-
Mark: The Dataset Generator.

1. database_filler NAME.py. As the dataset needs to be properly prepared for
the new DBMS, functions need to be designed to tailor the produced dataset
to the needs of the DBMS. The structure should be similar to that defined in
database_filler_dubio.py and database_filler maybms.py.

A new probabilistic DBMS also has its own SQL dialect, so in QuestionMark: The
Probabilistic Benchmark additions should also be made to the code.

1. queries_NAME.py. To include a new DBMS, the first step is to include the
queries in the corresponding dialect. To do this, create queries_NAME.py. To see
what queries should be included, queries_pseudo_code, queries_MayBMS.py
and queries_DuBio.py can be used as a translation guide. Please stick to the
structure used in these files. When the proficiency level of the to be included
query dialect is not sufficiently high, it is advised to first test the queries in a
database tool of preference. This makes debugging queries easier.

90 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

2. execute_queries.py. This file is responsible for sending the queries to the
DBMS. In this file, include from queries NAME import NAME_QUERIES DICT .
In execute_query(), also include the DBMS in the first if-statement. Finally,
check if the execution time returned by the DBMS follows the pattern from
MayBMS or from DuBio. When the DBMS uses PostgreSQL 10 or higher, the
default can be used.

3. output_tui.py. This file prints the benchmark output. In create_result_
file(), add the new DBMS in the if-statement.

4. parameters.py. Include the new DBMS as an option of the DBMS variable.

5. metrics.py. To obtain the metric values from the new system, some metrics
should be tailored to the system. In char_count (), add the DBMS in the if state-
ment and verify if specific queries should get a discount in character count. This
is done, since characters required for raw record information do not count to-
wards the complexity of the dialect. Also the calculation in prob_size() should
be adapted and tailored to the manner in which the DBMS stores the probabilis-
tic data.

A.6.2. Including a new Non-PostgreSQL Based DBMS

To include a new non-PostgreSQL based DBMS system, additional steps need to be
taken. The following adaptations should be made to QuestionMark: The Dataset Gen-
erator.

1. database.ini.tmpl. Needs to be adjusted to support a different system.

2. database_filler.py. Most of this file should be adapted to generate a connec-
tion to the DBMS. Right now, the program uses psycopg2 to establish a database
connection. This library only works with PostgreSQL based database systems.
To provide support for other systems, please read through all methods in this
file and make adaptations where required.

3. insert_query.py. The create() method also uses Psycopg2. This method
should thus also be changed.

The following additional adaptations should be made to QuestionMark: The Proba-
bilistic Benchmark.

1. execute_query.py. This file establishes the connection with the database and
runs the benchmark. Please read through all functions and change the code
where needed.

2. connect_db.py. This file also establishes a connection with the database and is
used for metric queries. Please read through all functions and change the code
where needed. Most of these alterations can be copied from those implemented
in execute_query.

3. database.ini.tmpl. Needs to be adjusted to support a different system.

4. run_benchmark.py. This is the main file to run the benchmark. Also here, psy-
copgz2 is used. The present function thus needs to be adapted.

01
02
03

01
02
03
04

01

02

01

02
03

04
05
06
07
08

A.7. Query Implementations 91

A.7. Query Implementations

This Appendix contains the benchmark queries in pseudocode SQL and provides ex-
amples of its implementations into the dialects of DuBio and MayBMS.

A.7.1. Queries in Pseudocode
The queries below are included in the benchmark. For each query, additional infor-
mation is provided on its functioning and why it is included in the benchmark.

Test 1: Testing the connection. The first query is mainly included to have a low
strain query that can be used to test the connection. This query consists of basic SQL-
functionalities and all systems should be able to run this.

select attribute 'id'

from entity 'offers'
return the first 10 records;

Insight 1: Retrieve the full dataset, gain insight in data structure. This query is a
real strain tester of the system. The query itself is simple, but it requires the DBMS to
return all its data.

select all attributes
from 'offers';

if present select all remaining data;

Insight 2: Provide insight into the concentration of offers. This query can be used
to verify to what extent the DBMS can concentrate the uncertainty of an offer. It also
provides insights into the number of clusters that have been formed.

select the count of all attributes alias 'records',
<~ the count of all distinct values of attribute 'id' alias 'offers',
< the count of all distinct values of attribute 'cluster_id' alias '
— clusters'

from entity 'offers';

Insight 3: Provide insight into the distribution of cluster volumes. This query is in-
cluded as lower strain deterministic query and also includes useful insight into the
dataset. As larger clusters put more strain on probability calculations, it is useful to
gain insight into the distribution of cluster volumes.

select attribute 'cluster_size',

< the count of all values of attribute 'cluster_size' alias 'amount'
from subquery (

select the count of all distinct values of attribute 'id' alias '

— cluster_size'

from entity 'offers'

grouped by attribute 'cluster_id'
) alias 'cluster_sizes'
grouped by attribute 'cluster_size'
ascendingly ordered by 'cluster_size';

Insight 4: Gets the percentage of certain clusters. This query provides insight into
the uncertainty of the generated dataset. A new dataset can be generated when the

01

02

01

02
03

01

02

01

02
03

01
02

03
04

01

02

92 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

result of this query does not match the uncertainty of the real-world dataset. It also
verifies if probability calculations can be done on aggregated data.
select the count of all certain records divided by the count of all

<~ attributes times 100 rounded to four decimal places alias 'certain

—> percentage'
from entity offers;

Insight 5: Get the id and probability of the offers from a specific possible world. In
some situations it might turn out useful to make a selection based on the probabil-
ity space of a record. This query returns any record satisfying a specific sentence or
probability space declaration.
select attribute 'id',

<~ the probability attribute,

<~ the variable or sentence attribute

from entity 'offers'
satisfying a specific variable or sentence statement;

Insight 6: Get the average probability of the dataset. This is another query that tests
the strain of the system. It performs a probability calculation over the entire dataset.
It also provides insights into the uncertainty of the dataset.

select the average of the probability attribute rounded to four decimal

— places alias 'certainty_of_the_dataset'
from entity 'offers';

Probabilistic 1: Get offers with the probability of their occurrence. This query con-
tains the most basic added functionality of any probabilistic DBMS, which is the pre-
sentation of the probability. It also evaluates the speed of ordering based on the prob-
ability attribute.

select the probability attribute rounded to four decimal places alias '

— probability',
<~ all attributes
from entity 'offers'
descendingly ordered by 'probability';

Probabilistic 2: Gets the expected count of the categories. One more advanced oper-
ation on probabilistic data is to obtain the expected count of an attribute. This query
evaluates if that operation is supported.
select the attribute 'category',

—> the expected count per attribute 'category' alias 'expected_count'
from entity 'offers'

grouped by attribute 'category'
descendingly ordered by 'expected_count';

Probabilistic 3: Gets the expected sum of the product ids per cluster. Another closely
related operation is the expected sum. This query evaluates if that operation is sup-
ported.

select attribute 'cluster_id',

<~ the expected sum per attribute 'id' alias 'number_of_offers'
from entity 'offers'

03
04

01

02
03
04

01

02
03
04
05
06
07

08
09
10

01

02
03
04
05

A.7. Query Implementations 93

grouped by attribute 'cluster_id'
descendingly ordered by 'number_of_offers';

Probablistic 4: Gets the variables/sentence and probability for the categories. This
query is again focused on strain testing. This query produces large aggregations of
probabilities, which need to be evaluated to return the query result. This query tests
if the DBMS can digest these large aggregations.

select attribute 'category',
< the compound variable/sentence attribute,
<~ the compound probability attribute rounded to four demical places
<~ alias 'probability'

from entity 'offers'

grouped by attribute 'category'

descendingly ordered by 'probability';

Probabilistic 5: Returns the most probable offer that is related to a specified string
. This query represents the behaviour of a search engine, where the most probable
offer satisfying a search condition should be returned. An example string is ’card’.
The pseudocode provided contains a workaround method to obtain the most probable
answer. It can be shortened to represent native support of this functionality. This
query contains hard-coded information and may require an adaptation when having
generated a fitting dataset. See Section 5.4.1 for more information.

select all attributes,
<~ the probability attribute rounded to four decimal places alias
— probability'
from entity 'offers'
satisfying that the attribute value 'cluster_id' exists in subquery (
select attribute 'cluster_id'
from entity 'offers'
satisfying that attribute 'title' a specified string
or that attribute 'description' contains a specified
— string

)
descindingly ordered by 'probability'
return the first 1 records;

Probabilistic 6: Returns all offers containing a specified string with a high uncer-
tainty. When a dataset contains large volumes of highly uncertain data, it can be
useful to let a selection of data pass human inspection. This query returns the most
uncertain offers so these can be manually classified. This query contains hard-coded
information and may require an adaptation when having generated a fitting dataset.
See Section 5.4.1 for more information.

select attribute 'id',
— attribute 'cluster_id',
— attribute 'brand',
<~ attribute 'category',
<~ attribute 'identifiers'
from entity 'offers'
satisfying that attribute 'title' contains a specified string
or that attribute 'description' contains a specified string
and the value of the probability attribute is higher than 0.45

06

01
02
03
04
05

01
02
03
04
05
06
07
08

94 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

and the value of the probability attribute is lower than 0.55;

Insert, Update, Delete 1: Inserting a new probabilistic cluster. When dealing with
probabilistic databases, new data can be added regularly. This query verifies the speed
at which new clusters can be added to the database.

insert into entity 'offers'
the values (a copy of a cluster with size five, with negative id values.);

if required add the new probabilities to the corresponding entity;
if required manually repair the probability space;

Insert, Update, Delete 2: Inserting bulk. When large volumes of data are constantly
added to the database, they are likely added in bulk. This query strain tests the DBMS
on large additions of probabilistic data. The current table ‘bulk insert’ contains 1000
offers and their corresponding probabilities.
insert into entity 'offers'
the results of subquery (

select all attributes

from entity 'bulk_insert'

)

if required add the new probabilities to the corresponding entity;
if required manually repair the probability space;

Insert, Update, Delete 3: Update uncertainty. This query updates the uncertainty
of a specific cluster. As the location of the probability greatly determines the form
of this query, its pseudocode is more abstract. This query contains hard-coded infor-
mation and may require an adaptation when having generated a fitting dataset. See
Section 5.4.1 for more information.

01
02
03
04

01
02

03
04

05
06
07

08
09

10
11
12
13

14
15
16
17

18
19
20

01
02

03
04
05

A.7. Query Implementations 95

update the entity containing the probabilities.
alter half of the probabilities of a cluster with four offers;

if required manually repair the probability space;

Insert, Update, Delete 4: Remove uncertainty. When working with probabilistic data,
chances are that new evidence will be found and the database should be updated ac-
cordingly. In this query, a cluster of size 4 will be split into three clusters. It is cur-
rently run on the cluster with cluster_id 162. This query contains hard-coded infor-
mation and may require an adaptation when having generated a fitting dataset. See
Section 5.4.1 for more information.

update entity 'offers'

set attribute 'cluster_id' with the maximum value of attribute 'cluster_id
— ' + 1,
the variable/sentence/probability attribute to certain

satisfying that attribute 'id' has the value of the first offer in the
<~ cluster;

update entity 'offers'

set attribute 'cluster _id' with the maximum value of attribute 'cluster_id
— ' + 1,
the variable/sentence/probability attribute to certain

satisfying that attribute 'id' has the value of the third offer in the
— cluster;

update entity 'offers'

set the variable/sentence/probability attribute to a new normalized value

satisfying that attribute 'id' has the value of the second offer in the
— cluster;

update entity 'offers'

set the variable/sentence/probability attribute to a new normalized value

satisfying that attribute 'id' has the value of the fourth offer in the
<~ cluster;

if required update the probabilities in the corresponding entity;
if required update the probability space;

Insert, Update, Delete 5: Delete a full cluster. Any probabilistic data should also not
slow down the deletion of data significantly. This query tests the speed of the DBMS
when deleting probabilistic data. This query contains hard-coded information and
may require an adaptation when having generated a fitting dataset. See Section 5.4.1
for more information.

delete all records from entity 'offers'

satisfying that attribute 'cluster_id' has the value of the specified
—» cluster;

if required delete the probabilities in the corresponding entity;
if required manually repair the probability space;

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

96 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

A.7.2. Queries in DuBio

-- Test 1:
SELECT id
FROM offers
LIMIT 10;

-- Insight 1:
SELECT =
FROM offers;

SELECT print(dict) FROM _dict WHERE name='mydict';

-- Insight 2:
SELECT COUNT (*) as records,

COUNT (DISTINCT (id)) as offers,

COUNT (DISTINCT (cluster_id)) as clusters
FROM offers;

-- Insight 3:
SELECT cluster_size, COUNT(cluster_size) as amount
FROM (
SELECT COUNT(DISTINCT(id)) as cluster_size
FROM offers
GROUP BY cluster_id
) as cluster_sizes
GROUP BY cluster_size
ORDER BY cluster_size ASC;

-- Insight 4:

SELECT ROUND (COUNT (CASE WHEN istrue(_sentence) THEN 1 END)::decimal /
< COUNT (%) ::decimal, 4) * 100 AS certain_percentage

FROM offers;

-— Insight 5:
WITH prob AS (
SELECT prob(dict, 'w43=1') AS probability
FROM _dict
WHERE name = 'mydict'
)
SELECT offers.id, prob.probability, hasrva(_sentence, 'w43=1')
FROM offers, prob
WHERE hasrva(_sentence, 'w43=1');

-- Insight 6:

SELECT AVG(probability) AS certainty_of_the_dataset

FROM (
SELECT round(prob(d.dict, o._sentence)::NUMERIC, 4) AS probability
FROM offers o, _dict d
WHERE d.name = 'mydict'

) AS probabilities;

-—- Probabilistic 1:

SELECT round(prob(d.dict, p._sentence)::NUMERIC, 4) AS probability, o.x*
FROM offers o, _dict d

WHERE d.name = 'mydict'

ORDER BY probability DESC;

55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108

A.7. Query Implementations 97

-— Probabilistic 2:

SELECT category, SUM(prob(d.dict, o._sentence)) AS expected_count
FROM offers o, _dict d

WHERE d.name = 'mydict'

GROUP BY category

ORDER BY expected_count DESC;

-— Probabilistic 3:

SELECT cluster_id, ROUND(SUM(id * prob(d.dict, o._sentence))::NUMERIC, 2)
— AS expected_sum, COUNT(id) AS number_of_offers

FROM offers o, _dict d

WHERE d.name = 'mydict'

GROUP BY cluster_id

ORDER BY number_of_offers DESC;

-- Probablistic 4:
WITH category_sentence AS (
SELECT category, AGG_OR(_sentence) AS sentence
FROM part
GROUP BY category
)
SELECT cs.*, round(prob(d.dict, cs.sentence)::NUMERIC, 4) AS probability
FROM category_sentence cs, _dict d
WHERE d.name = 'mydict'
ORDER BY probability ASC;

-- Probabilistic 5:
Returns the most probable offer that is related to 'ford'.
SELECT p.*, round(prob(d.dict, _sentence)::NUMERIC, 4) AS probability
FROM part p, _dict d
WHERE cluster_id IN (
SELECT cluster_id
FROM part
WHERE title LIKE 'Y%ford}'
OR description LIKE 'Yford)'
)
ORDER BY probability DESC
LIMIT 1;

-- Probabilistic 6:

SELECT o.*

FROM offers o, _dict d

WHERE title LIKE 'Ycard?'

OR description LIKE 'J,card}'

AND prob(d.dict, _sentence) > 0.45
AND prob(d.dict, _sentence) < 0.55;

-- Insert, Update, Delete 1:
INSERT INTO offers (id, cluster_id, title, brand, category, description,
— price, identifiers, keyvaluepairs, spectablecontent, "_sentence")

VALUES (-464, 77, ..., Bdd('b77x1=1&v77=1')),
(-466, 77, ..., Bdd('b78x1=0&v78=1')),
(-468, 77, ..., Bdd('b77x1=2&v77=1')),
(-469, 77, ..., Bdd('b78x1=1&v78=1"')),

(=471, 77, ..., BdAd('b77x1=0&v77=1"'));

98 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

109
110 | UPDATE _dict
111 | SET dict = add(dict, 'b77x1=0:0.24454, ..., v77=3:0.246")
112 | WHERE name='mydict';
113 |
114 | -- Insert, Update, Delete 2:
115 | INSERT INTO offers(id, cluster_id, title, brand, category, description,
< price, identifiers, keyvaluepairs, spectablecontent, _sentence)
116 | SELECT * FROM bulk_insert;
117 |
118 | UPDATE _dict
119 | SET dict = add(dict, 'b000x1=0:0.500000, ... v966=2:0.203147")
120 | WHERE name='mydict';
121 |
122 | -- Insert, Update, Delete 3:
123 | UPDATE _dict
124 | SET dict = upd(dict, 'a7x1=0:0.3992, ..., w8=3:0.184")
125 | WHERE name='mydict';
126 |
127 | -- Imnsert, Update, Delete 4:
128 | WITH max_cluster AS (
129 | SELECT (max(cluster_id) + 1) AS max_id
130 | FROM offers
131 |)
132 | UPDATE offers
133 | SET cluster_id = max_cluster.max_id,
134 | _sentence = Bdd('1')
135 | FROM max_cluster
136 | WHERE id = 2689021;
137 |
138 | WITH max_cluster AS (
139 | SELECT max(cluster_id) + 1 AS max_id
140 | FROM offers
141 1)
142 | UPDATE offers
143 | SET cluster_id = max_cluster.max_id,
144 | _sentence = Bdd('1')
145 | FROM max_cluster
146 | WHERE id = 7257664;
147 |
148 | UPDATE offers
149 | SET _sentence = Bdd('a162x5=0&w162=0")
150 | WHERE id = 10198975;
151 |
152 | UPDATE offers
163 | SET _sentence = Bdd('al162x5=1&w162=0")
154 | WHERE id = 2668263;
155 |
156 | UPDATE _dict
157 | SET dict = add(dict, 'w162=0:0.83')
158 | WHERE name='mydict';
159 |
160 | UPDATE _dict
161 | SET dict = del(dict, 'al62x5=2")
162 | WHERE name='mydict';
|

163

A.7. Query Implementations

164 | -- Insert, Update, Delete 5:
165 | DELETE FROM offers
166 | WHERE cluster_id = 41;
167 |
168 | UPDATE _dict
169 | SET dict = del(dict, 'a41x1=0, ..., wé44=5"')
170 | WHERE name='mydict';
A.7.3. Queries in MayBMS
01 |
02 | -- Test 1:
03 | SELECT id
04 | FROM offers
05 | LIMIT 10;
06
07 | -- Insight 1:
08 | SELECT
09 | FROM offers;
10 |
11 | -- Imnsight 2:
12 | SELECT COUNT(*) as records,
13 | COUNT (DISTINCT (id)) as offers,
14 | COUNT (DISTINCT (cluster_id)) as clusters
15 | FROM offers_setup;
16 |
17 | -- Imnsight 3:
18 | SELECT cluster_size, COUNT(cluster_size) as amount
19 | FROM (
20 | SELECT COUNT(DISTINCT(id)) as cluster_size
21 | FROM offers_setup
22 | GROUP BY cluster_id
23 |) as cluster_sizes
24 | GROUP BY cluster_size
25 | ORDER BY cluster_size ASC;
26 |
27 | -- Insight 4:
28 | SELECT ROUND(all_certain::decimal / all_offers::decimal, 4) * 100 AS
< certain_percentage
29 | FROM (
30 | SELECT COUNT(id) AS all_offers
31 | FROM offers_setup
32 |) AS count_all, (
33 | SELECT COUNT(id) AS all_certain
34 | FROM (
35 | SELECT id, tconf() AS confidence
36 | FROM offers
37 |) AS confidences
38 | WHERE confidence = 1
39 |) AS count_cert;
40
41 | -- Insight 5:
42 | SELECT id, tconf (*x), _vO
43 | FROM offers
44 | WHERE _v1 = 52379
45 | AND _d1 = 548185;

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99

100 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

-- Insight 6:
SELECT round ((AVG(tconf ()) * 100)::NUMERIC, 4) AS certainty_of_the_dataset
FROM offers;

-- Probabilistic 1:

SELECT round(tconf ()::decimal, 4) AS probability, *
FROM offers

ORDER BY probability DESC;

-—- Probabilistic 2:

SELECT category, ECOUNT() AS expected_count
FROM offers

GROUP BY category

ORDER BY expected_count DESC;

-— Probabilistic 3:

SELECT cluster_id, esum(id), COUNT(id) AS number_of_offers
FROM offers

GROUP BY cluster_id

ORDER BY number_of_offers DESC;

-- Probablistic 4:

SELECT category, conf() AS probability
FROM offers

GROUP BY category

ORDER BY probability DESC;

-- Probabilistic 5:
SELECT *, round(tconf ()::NUMERIC, 4) AS probability
FROM offers
WHERE cluster_id IN (
SELECT cluster_id
FROM offers_setup
WHERE title LIKE 'Ycardy'
OR description LIKE 'Ycard’'
)
ORDER BY probability DESC
LIMIT 1;

-- Probabilistic 6:

SELECT id, cluster_id, brand, category, identifiers
FROM offers

WHERE title LIKE 'Y,card'

OR description LIKE 'J,card}'

AND tconf () > 0.45

AND tconf() < 0.55;

-- Insert, Update, Delete 1:

INSERT INTO offers_setup (id, cluster_id, title, brand, category,
— description, price, identifiers, keyvaluepairs, spectablecontent,
< world_prob, attribute_prob)

VALUES (-464, 77, ..., 0.42911, 0.629),
(-466, 77, ..., 0.5, 0.246),
(-468, 77, ..., 0.32635, 0.629),

(-469, 77, ..., 0.5, 0.125),

100
101
102
103
104
105
106

107

108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

A.7. Query Implementations 101

(=471, 77, ..., 0.24454, 0.629);

DROP TABLE IF EXISTS offers_rk_world CASCADE;
DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
DROP TABLE IF EXISTS offers CASCADE;

CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup
— WEIGHT BY world_prob;

CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY
— attribute_prob;

CREATE TABLE offers AS (
SELECT attrs.x*
FROM offers_rk _attrs AS attrs, offers_rk world AS world
WHERE attrs.id = world.id

)¢

-- Insert, Update, Delete 2:

INSERT INTO offers_setup (id, cluster_id, title, brand, category,
<~ description, price, identifiers, keyvaluepairs, spectablecontent,
— world_prob, attribute_prob)

SELECT * FROM bulk_insert;

DROP TABLE IF EXISTS offers_rk_world CASCADE;
DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
DROP TABLE IF EXISTS offers CASCADE;

CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup
<~ WEIGHT BY world_prob;

CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY
— attribute_prob;

CREATE TABLE offers AS (
SELECT attrs.x*
FROM offers_rk_attrs AS attrs, offers_rk_world AS world
WHERE attrs.id = world.id

)¢

-- Insert, Update, Delete 3:

UPDATE offers

SET world_prob = 0.345,
attribute_prob = 0.3992

WHERE _dO = 615777

AND _d1 = 613619;

UPDATE offers

SET world_prob = 0.345,
attribute_prob = 0.6008

WHERE _dO = 615777

and _dl = 613841;

UPDATE offers

SET world_prob = 0.1254,
attribute_prob = 0.5

WHERE _dO = 615999

AND _d1l = 613619;

102 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

150
151 | UPDATE offers
152 | SET world_prob = 0.1254,
1563 | attribute_prob = 0.5
154 | WHERE _dO0 = 615999
165 | and _dl = 613841;
156
157 | UPDATE offers
158 | SET world_prob = 0.487,
159 | attribute_prob = 0.4300
160 | WHERE _dO0 = 615850
161 | and _d1 = 613395;
162
163 | UPDATE offers
164 | SET world_prob = 0.487,
165 | attribute_prob = 0.5700
166 | WHERE _dO0 = 615850
167 | AND _d1 = 613692;
168
169 | UPDATE offers
170 | SET world_prob = 0.487,
171 | attribute_prob = 0.4300
172 | WHERE _dO0 = 615999
173 | and _d1 = 613841;
174 |
175 | UPDATE offers
176 | SET world_prob = 0.487
177 | WHERE _dO0 = 615553
178 | AND _d1 = 613692;
179
180 | UPDATE offers
181 | SET world_prob = 0.487
182 | WHERE _d0 = 615553
183 | and _d1 = 613395;
184 |
185 | UPDATE offers
186 | SET world_prob = 0.329
187 | WHERE _dO0 = 614032
188 | AND _d1 = 612733;
189
190 | UPDATE offers
191 | SET world_prob = 0.329
192 | WHERE _dO0 = 614032
193 | and _dl1 = 611874;
194
195 | UPDATE offers
196 | SET world_prob = 0.184
197 | WHERE _dO0 = 615197
198 | AND _d1 = 612733;
199 |
200 | UPDATE offers
201 | SET world_prob = 0.184
202 | WHERE _dO = 615197
203 | and _d1 = 613039;
204 |
|

205 DROP TABLE IF EXISTS offers_rk_world CASCADE;

206
207
208
209

210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254

255

256
257

A.7. Query Implementations

103

DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
DROP TABLE IF EXISTS offers CASCADE;

CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup
— WEIGHT BY world_prob;

CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY
— attribute_prob;

CREATE TABLE offers AS (
SELECT attrs.x*
FROM offers_rk_attrs AS attrs, offers_rk_world AS world
WHERE attrs.id = world.id

E

-- Insert, Update, Delete 4:

UPDATE offers_setup

SET cluster_id = max_cluster.max_id,
world_prob = 1,
attribute_prob = 1

FROM (
SELECT max(cluster_id) + 1 AS max_id
FROM offers_setup

) as max_cluster

WHERE id = 12071001;

UPDATE offers_setup

SET cluster_id = max_cluster.max_id,
world_prob = 1,
attribute_prob = 1

FROM (
SELECT max(cluster_id) + 1 AS max_id
FROM offers_setup

) as max_cluster

WHERE id = 16457529;

UPDATE offers_setup

SET world_prob = 0.63,
attribute_prob = 0.5

WHERE id = 7339350;

UPDATE offers_setup

SET world_prob = 0.63,
attribute_prob = 0.5

WHERE id = 12326926;

DROP TABLE IF EXISTS offers_rk_world CASCADE;
DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
DROP TABLE IF EXISTS offers CASCADE;

CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup
<~ WEIGHT BY world_prob;

CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY
— attribute_prob;

CREATE TABLE offers AS (
SELECT attrs.*

258
259
260
261
262
263
264
265
266
267
268
269
270

271

272
273
274
275
276
277

104 Appendix A. The QuestionMark Benchmark for Probabilistic Databases

FROM offers_rk _attrs AS attrs, offers_rk world AS world
WHERE attrs.id = world.id
PR

-- Insert, Update, Delete 5:
DELETE FROM offers_setup
WHERE cluster_id = 41;

DROP TABLE IF EXISTS offers_rk_world CASCADE;
DROP TABLE IF EXISTS offers_rk_attrs CASCADE;
DROP TABLE IF EXISTS offers CASCADE;

CREATE TABLE offers_rk_world AS REPAIR KEY cluster_id IN offers_setup
— WEIGHT BY world_prob;

CREATE TABLE offers_rk_attrs AS REPAIR KEY id IN offers_setup WEIGHT BY
— attribute_prob;

CREATE TABLE offers AS (
SELECT attrs.x*
FROM offers_rk_attrs AS attrs, offers_rk_world AS world
WHERE attrs.id = world.id

D¢

