Software Development (202001064)
Programming (202001066)

Programming Report — UNO

Wouter Deen, S3032132, s.w.deen@student.utwente.nl
lulia Costea, S3007715, i.costea-1@student.utwente.nl

January/2023

Contents

IO Y51 (= 0 1= o o USSR 4
1.1 Class and Package dIBGIAMScuiiriierieieieiee sttt n e 4
I O T3 [- o o SRR 4
A o o G T Lol o [T To = o USSR 4
1.1.3 UNIt LESIS PACKAGE ...ttt n ettt nn e 4

1.2 Implementation of functional reqUITEMENTSccviiiiiiie e 4
1.2.1 The NEIWOIK PrOtOCON........cieeie et sttt e reenesreenes 4
1.2.2 StArtING ThE SEIVEL ...cviieice e et b e st e e e s beeae e s besaeebesbeennesreares 4
1.2.3 Accepting CONNECTIONS ON T SEIVET.........cviiiiiiiiie e 5
1.2.4 Receiving commands 0N the SEIVET........cc.ciiiicie ettt sre e sre e e sbe s te e sreees 5
1.2.5 Handling input 0N the CHENT............ooiiiic e et sre e 5
1.2.6 PIAYING 8 CAIU.....eitiiiieieeeie sttt b bbbttt bbb nn e 5
1.2.7 DIAWING @ CAIG ...tttk ekttt b bbb et e e st b et nb b n e 5
1.2.8 Calculating points and anNOUNCING WINNETc.cveiuiieeieiese et ee et sre e sre e e sre e sreens 6
(R B\ AV O o - 11 (=] o SRR RP PRI 6
O U o]] (<] = Vo= TSRS 6
1.2.11 Handling errors: SEIVEI-SIAEcviiiiieie ittt st be et sbe et et sre b e besneesreens 7
1.2.12 Handling errors: CHENT-SIAE.........c.oiiiieiie ettt sre et s re e be e sreens 8
1.2.13 COMPULET PIAYETeutieeieeieiieie ettt bt bbbt e sttt nb et nben e 8
I AN [0 [T T L £ LN =TSSR 9

1.3 Model-View-Controller PALLEINccvoiieiiiiiie ettt st sresre b sre e e 10
N -] o OO PP R R TR PP TR PTPTPOO 11
2.1 UNTETESTING vttt b bbb bt bbbttt b bbb e n e 11
LU T =T [o SRRSO 11
2.1.1 GAME ClaSS tESING....ccuiiiiiti ittt et sttt e st e e e st e e be e besreenbente e e e sreares 12
2.1.2 PIaYer Class TESTINGc.veueeieiiiitiiteite ittt bbbttt bt 12
2.1.3 Card ClasS TESTINGveveueeieitiitisieite ettt b e et b ettt nen e 13
2.1.4 CardPile Class tESTINGccuiiieiiieiee ettt sae et et re et e eaeeeeseeenes 13

2.2. SYSTEIM TESTING ...ttt bbbt b bbbt et s b e bbbt e n e 14
ACAEMIC SKITIS TEPOIT ...ttt bbbttt ettt et enes 19

1. How was your planning influenced by your experiences with the planning and time writing during
LU L S Lo | T o] (0] [SRS 19

2. To what extent did your planning correspond to the actual progress during the project weeks? What
made you deviate from Yyour PIANNING?.........ccooviiiiii e 20

3. Which counter measures did you take to compensate for deviations from your original planning?
What was the impact of this on the intended scope or quality of the project?..........cccoceveviivevienenn, 20

4. What did you learn from this experience for your next (project) planning? Take your answers to the
other questions into account and ask yourself how you would want to prevent this or deal with this

NIEXE TITIE. ..ttt bbb R b e st h Rt R e bR R Rttt R R R r e n e n e 20
5. Suppose that next year you are a teaching assistant for this project. Give at least two do’s and don’ts
that you would tell your students to help them with their planning.ccccooce v, 21
Appendix A: Academic SKillS PIanNiNg..........ccooiiiiiii i 23

1. System Design

1.1 Class and package diagrams

1.1.1 Class diagram

To convey our design choices regarding classes with their fields and methods, we hereby provide a class
diagram. This class diagram is provided as a separate PDF file in the project’s GitLab repository. Provided
in our class diagram are all classes in our project, with all associations between classes. We also added
descriptions to some of the classes, to make their usage or certain design choices clearer. For further
explanation about how we implemented multithreading (i.e., what classes are multithreaded and not), see
section 1.2.

1.1.2 Package diagram

In addition to this, we made a UML package diagram, which is also provided as a separate PDF file in the
project’s GitLab repository. We decided on making a package diagram to make it abundantly clear what
classes belong to each package. This also highlights our choices regarding the model-view-controller
(MVC) pattern. You can read more about this in section 1.3.

1.1.3 Unit tests package

In addition to the Model, View, and Controller packages, our main package (nl.utwente.cardgame) also
contains a fourth package called Tests. We deliberately left out this test package and all its classes from the
provided diagrams because tests are not of any importance for running the UNO application.

1.2 Implementation of functional requirements

For this project, we received a list of functional requirements to implement. Below, for each functional
requirement, you will find a description of how we implemented it and what classes and packages we used
for it.

Our initial offline implementation of the UNO game for deadline 2 (with the game logic as a deliverable),
already had a fully functional game of UNO that in theory could host an unlimited number of players.
However, for UNO, the player limit is 10. Instead of having separate projects for the client and the server
application, we have a single project that contains all the necessary packages and classes to run both as a
server and as a client. Starting the game as a server or a client is as easy as specifying “server” or “client”
as the first CLI argument for running the JAR file. For more information on how to run the game, see the
readme file in the repository.

1.2.1 The network protocol

To play UNO over the network, we made a Server and a Client package inside the Controller package.
These classes contain all code to communicate over the network to each other. For communication over the
network, we are sending stringified JSON objects. These JSON objects contain key-value pairs, based on
the specifications in the protocol of our mentor group. We wrote this protocol and added very detailed
descriptions and lots of examples to the readme, which you can view on the separate protocol repository.
Here, we wrote in more detail about how sending and receiving commands over the network works,
including code snippets.

1.2.2 Starting the server
To start a server, we create a new instance of the Server class in the Main class (in the Controller package),
and we execute this server on a separate thread. To start listening for connections on the server, we create

https://gitlab.utwente.nl/s3032132/uno-game
https://gitlab.utwente.nl/s3032132/uno-game
https://gitlab.utwente.nl/s3032132/uno-protocol

a new ServerSocket in the Server class’s run() method, which will be invoked once the server’s thread has
been started. The server’s run method will also create two thread pools by using the
java.util.concurrent.Executors package:

1. aclientPool for running all instances of ClientHandler;
2. agamesPool for running all instances of Game.

1.2.3 Accepting connections on the server

To accept connections, we created an infinite loop, that waits for the server.accept() method to return a Socket.
Since Java functions are synchronous by default, this means that the loop will only start over once it
accepted a new socket. With this socket, inside the loop, a new instance of ClientHandler will be created
and executed in the clientPool. A ClientHandler is constantly listening for incoming messages from the
client, and if it receives a message, it will act accordingly. Because each ClientHandler needs to be
constantly listening to incoming messages from the input stream from the client’s socket, each
ClientHandler needs to be run in its own thread.

1.2.4 Receiving commands on the server

The run() method of the ClientHandler will loop for each incoming message and it will try to parse an
incoming stringified JSON message back into a JSONObject. We read the value of the command key from
this JSON object and run this through a switch statement. Each case will invoke different methods. For
playing a game, there are essentially two important commands: PLAY_CARD and DRAW_CARD, used for
playing and drawing a card respectively. The PLAY_CARD command will invoke the Game class’s playCard()
method, and the DRAW_CARD command will invoke the Game class’s drawCard() method.

1.2.5 Handling input on the client

We have the InputHandler class inside the View package to handle standard 1/0 operations of the system.
This means reading and printing lines in the terminal by using System.in and System.out. Most methods that
need to read data from the standard 1/0 will have a designated function for this in the InputHandler. This
class contains a print() method, which receives a JSON object from the IncomingHandler and prints it
accordingly, depending on the command that it holds. This JSON object is an object that has been received
from the server.

1.2.6 Playing a card

When the ClientHandler receives a PLAY_CARD command, it will call the playCard() method in the Game
class. This method invokes all necessary methods to play a card. First, it will check if it’s actually this
player’s turn, after which it will invoke the card.isvalidMove() method to determine whether playing this card
abides by all the rules of UNO. If not, it will send an error to the client.

If the card is valid, it will call the playCard() method on the current player. If the card that the player is trying
to play is an action card, this method will call the performAction() method on that card. It will then call the
discardCard() method on the hand, which handles removing the card from the player’s hand and placing it
on top of the discard pile. After that, in the Game class, the playCard() method will construct a new JSON
object for the NEXT_TURN command, following the specification in the protocol’s documentation. For
playing a card, we made a schematic illustration of the different classes that come into play. Please see
Figure 1-4.

1.2.7 Drawing a card
Drawing a card has roughly the same control flow as playing a card. The drawCard() method in the Game
class invokes all necessary methods to draw a card. First, it will check if it’s this player’s turn, after which

it will call the drawCard() method on the current player. This method in the Player class contains the actual
functionality for drawing a card. It will call the pickCard() method of the DrawPile class. Drawing a card in
our game works differently from the real-world game: we do not have a method for shuffling the cards in
the draw pile. Instead, the pickCard() method takes care of selecting a random card from the draw pile. The
players of our game will never see the difference, but behind the scenes, it results in much cleaner code.
After calling pickCard(), the drawCard() method will add the card to the player’s hand by calling the addcCard()
method on the player’s Hand. This method is inferred by the Hand class from extending the CardPile class.

In UNO, if you draw a card and it is a valid card to play, you can play it. We implemented this by making
the player automatically play this card by executing the playCard() method in the Game class. This is because
our network protocol does not support asking a player whether they want to immediately play this card or
not, so we implemented this as an acceptable compromise. For all players with chat functionality enabled,
it will send them a CHAT command with an accompanying message (the player was able to play the card
that they drew). Hereafter, it will construct a JSON object containing the NEXT_TURN command and
broadcast this to all players.

1.2.8 Calculating points and announcing winner

Eventually, a player will play their last card. Since the Game class is a controller class (see the package
diagram), we use the playCard() method to check whether the player played their last card. This is done by
requesting the cards in the player’s hand by calling the getCards() method of the Hand class. This method
originates from the abstract CardPile superclass of Hand. The CardPile class is also extended by the
DrawPile and DiscardPile classes, each having its own implementation and additional methods.

If the getCards() method returns an empty list, the hand is empty and we call the calculatePoints() method on
the player that played their last card. This method loops through all the cards of every player in the game
in a nested for-loop and adds the points of each card to a variable holding the total amount of points. Reading
the points value of each card is done by invoking the getPoints() method on a Card object. The NumberCard
and ActionCard classes extend the abstract Card class and have their own implementation of this method.
It returns the points that a certain card is worth according to the official UNO game rules.

After calculating the total points that the cards in the hands of other players are worth, it will add these
points to the total points of this player. We broadcast the end of this round to each player’s ClientHandler
by constructing a JSON object with the ROUND_FINISHED command. If the total amount of points is 500 or
more, we set this player as the winner by calling the finish() method on the Game. This method will
broadcast a JSON object with the GAME_FINISHED command according to the protocol requirements.

1.2.9 MVC pattern
We discuss this functional requirement in section 1.3.

1.2.10 User interface

For the user interface of the client application, we built a TUI (Text-based User Interface). This TUI is
using the standard input and output of a Java application to read and write messages to and from the console.
We use the InputHandler class inside the View package to communicate with the client using the TUI. We
have methods like print(), printLine(), and printError(), but we also have use-case-specific methods, like getPort()
and getWildcardColor(), which are used for getting the port of the server and getting the color of the wildcard
that the user wants to play. We used the provided ASCII interface to give our messages some colors.

1.2.11 Handling errors: server-side

On the server-side, we made sure to catch all possible exceptions. However, a user might try to perform an
unauthorized action, like trying to play a card that does not abide the rules of UNO. When something like
this happens, we send a JSON object with the ERROR command over the network to the client. This JSON
object also contains the error code and a description (please refer to our protocol specification). The game

knows what instance of ClientHandler to use for this, since the constructor of HumanPlayer receives a
ClientHandler object. Thus, we can do:

Figure 1-1: sending an object to the client by first getting the ClientHandler of the current player, and then invoking the sendObject
method from the ClientHandler class.

An error will most likely be sent over the network by either the ClientHandler class or the Game glass since
these are important controller classes. An example of an exception being caught in the ClientHandler is the
JSONEXxception. This exception is thrown by the org.json package that we use for working with JSON
objects. When this exception is thrown, it means that it could not parse the received string from the client
back into a JSON object. When such an exception is caught, we send a JSON object back to the client, with
the ERROR command and an error code and description, as per the network protocol requirements.

The most common network-related exception is an I0OException. This could mean all kinds of things,
depending on where the exception is caught and what the exception’s message is. In the ClientHandler
class, we have a loop in place for reading data from the client. This is done by creating a new InputStream
from the client’s socket input stream and wrapping the InputStream in a new BufferedReader:

Figure 1-2: reading from and writing to the client's socket by using the socket's input and output stream. This method also handles
common exceptions.

https://gitlab.utwente.nl/s3032132/uno-protocol

In the provided code in Figure 1-2, you can see the code for receiving messages from the connected socket
(the client) and handling exceptions. If we catch an IOException while receiving a new line from the socket
(in.readLine()), this is likely due to a connection reset. If this is the case, we call the shutdown() function
on the ClientHandler. This will close the socket’s input and output stream and remove the client from the
list of connected clients in the Server class. Also, if the player was in a queue, we remove them from the
gueue. If the player was in a game, we remove them from the game and also stop the execution of the entire
game using the shutdown() function in the Game class. Finally, to stop the execution of the thread that is
running this instance of ClientHandler, we call Thread.currentThread().interrupt(). Note that the code implies
that if we catch an IOException here that has a different message than “Connection reset”, we ignore it.
This is because other IOExceptions might be a one-off, and we decided that we do not have to handle these,
except to prevent a termination of the current thread.

A class that is even more likely to send errors to the client than the ClientHandler is the Game class. These
errors are for playing an invalid card and trying to play/draw a card while it’s not your turn. These are the
errors that are most often sent from the server to a client since someone might mistakenly think it’s their
turn, or accidentally play a card that they are not allowed to play.

Errors are only sent from the server to the client and not vice versa. The ClientHandler on the server will
ignore incoming ERROR commands if you try to send them.

1.2.12 Handling errors: client-side

On the client side, errors will be received like any other command from the server and will be forwarded to
the InputHandler to be dealt with. However, we also need to handle certain problems that could occur on
the client-side, without communicating with the server. These problems are by design always input
problems. For instance, we have a lot of places where only a number input is valid. Catching a
NumberFormatException is not mandatory, but we always do it in places where we call Integer.parseint() to
prevent problems. An example of this is the getPort() method, located in the InputHandler class in the View
package. It will read a port from System.in and return it to the caller object:

Figure 1-3: getPort() method inside the InputHandler class

1.2.13 Computer player

For implementing the computer player, we chose to run this computer player directly on the server. This
means that it is not possible to run a client as a computer player. This not only prevents players from
cheating but also provides some useful functionalities. Namely, if a client joins the queue for a game for a

certain number of players, a timer of 30 seconds starts. If not enough players join within 30 seconds to fill
up all the player slots, the remaining slots will be filled by computer players. This makes sure that players
do not have to wait too long to play a game.

This timer is implemented in the ClientHandler class and will be started by the first player to join the queue.
We made a separate function to start the timer: startTimeLeftBroadcaster. It uses the chat functionality to
broadcast the remaining time to each player in the queue. If a client does not support the chat functionality,
it will simply not receive the chat and it will just receive the GAME_STARTED command after 30 seconds.

In addition to computer players filling up a queue after the time limit has been reached, you can also make
computer players play against each other in a computer game (see readme markdown file in the GitLab
repository).

We found that for playing a computer game, the fewer computer players that play against each other, the
longer a game will take. At some point our computer players were not smart enough to finish a game with
only two players, resulting in a range of exceptions. We will talk about this in more detail in the 2™ chapter
(Testing), but to sum up, we had to make the computer player smarter and increase the stack size. Please
make sure that if you run the game, you run it with the right stack size, otherwise, a StackOverflowError
might occur.

1.2.14 Additional features

We had to implement at least one additional feature from the list of additional features. We picked the chat,
the multi-game server, and the lobby features to implement. We will discuss each functionality and how
we implemented it.

Chat functionality

In our network protocol, the CHAT command is treated like every other command. When a player enters a
message into the standard input that is not a command, the entire input will be treated as a chat message.
The OutgoingHandler will construct a new JSON object with the CHAT command and all other required
parameters, as required per the protocol. This will then be sent over the network and will be received by
the ClientHandler that is dedicated to this client’s specific socket. The ClientHandler can request all
connected clients from the server, and invoke the broadcast() method from the Server class. This method
takes two arguments: a list of ClientHandlers (clients) to broadcast to, and the JSON object. The
ClientHandler will add the displayName of this client to the JSON object, after which it will broadcast it to
a certain list of clients. If a player is not in any game or any queue, it will broadcast the message to all
players in the lobby. If a player is in a queue, it will broadcast the message to all players in the queue. If a
player is in a game, it will use the Game class’s broadcast() method to broadcast the JSON object to all
clients in the game.

Multi-game server

First off, the multi-game server. This was extremely easy to implement, since we already had the knowledge
about thread pools since needed one for the ClientHandler, as discussed previously. We created a new
thread pool and implemented the newGame() method in the Server class. This method is used for creating a
new game, together with some other things, like clearing the list of ClientHandlers in the queue ArrayList.
This list is saved inside the queues hashmap with integer-ArrayList key-value pairs, where the integer is
the gameSize (number of player slots) and the value is the ClientHandlers in the queue. Every time a new
game is created and constructed, it will be executed in a separate thread using the thread pool’s execute()
method. Running each game on a separate thread prevents a tread block in one game from affecting the
other games.

Lobby

The lobby functionality was implemented by combining the chat functionality and by using a list to save
all clients that are not in a queue or in a game, which means they will be in the lobby. In the lobby, players
can chat with each other, and decide together to join a game with a certain amount of player slots.

1.3 Model-View-Controller pattern

For this project, we decided on using the Model-View-Controller design pattern for implementing the
separation of concerns. We implemented this design pattern by separating all packages and classes into
three main packages: a View package, a Model package, and a Controller package. Which classes and
packages play the role of the model, view, and controller can be seen in the package diagram provided in
section 1.1, in addition to the class diagram.

Arguably the most important package of the three is the Controller package. This is the glue between the
controller and the view: classes in this package execute methods in classes from the Model package and
send data back to the View package for the user to see. Most of the time, a method of a class in the Model
package is of type non-void, meaning that it does some computations, and based on the specified
parameters, it returns a value to the caller method. Some model classes might also void functions, meaning
that they do not return any value.

A key characteristic of the model classes, more specifically the classes’ methods, is that they are not invoked
on their own. To see an example of this behavior, see Figure 1-4. The behavior that model classes often
perform computations and return data to a controller class, so that the controller class can invoke the next
method on a model class, is illustrated by the double-sided arrows.

10

View package Controller package Model package

InputHandler . OutgoingHandler Card
Reads the /play command from the user's Performs some data mutations on the client-

terminal input. side, after which it will construct a
JSONODbject with the command and all

Y

The selected Card that the player wants to play.

required parameters, including the value and Hand
color of the card. For this, it will invoke some The hand that holds the player's cards. This is
methods on the Card and Hand object. used both on the client- and server-side.

!

ClientHandler
Receives the JSONObject on the server.
from the OutgoingHandler of the client. In
this case, the command is PLAY_CARD, so
it will ask the Game to play the card as a

Player
1A ClientHandler is represented by a player in the
game. It performs actions as the player.

player. Card
Has a value and color and contains a method
for checking whether it is valid to play this card.
Game

Hand
The hand that holds the player's cards. This is
used both on the client- and server-side.

lltl

Invokes a method on the Card object to
check whether it's a valid move. After that, it
will call a method on Hand to remove the
card from the player's hand (on the server, <—<
not the client!) and put it on the DiscardPile.
It will broadcast the NEXT_TURN command
by looping through every player's

DiscardPile
I~ Will receive the Card object from the hand if the
card is a valid play.

ClientHandler. Player
¢ Ly The player has a hand that holds their cards. It
R also has a method for getting the corresponding
InputHandler IncomingHandler ClientHandler and for playing a card.
Uses methods like colorPrettier and Receives a JSONObject containing the
valuePrettier to format the color and value of NEXT_TURN command from the server and
the played card. It will display the played will perform some data mutations, like setting
card, and also the player who's turn is next. the new player name.It will forward the
Ifit's this player, it will display the player's JSONOBbject to the InputHandler to deal with
cards using printJSONCardsArray method. displaying it in the user's terminal.

Figure 1-4: schematic overview of the interactions between the Model, View, and Controller packages for playing a card.

As you can see in the above illustration, the View package is used solely for handling player interactions
with the program. The InputHandler class handles reading input from the TUI and the Controller package
will act on that input using certain model classes in the Model package. Of course, Figure 1-4 only illustrates
the scenario where a player plays a card. For drawing a card, different methods on different model classes
will be invoked at different moments.

2. Testing

2.1. Unit Testing

Junit Testing

For the JUnit testing, we choose to test the classes Game, Player, and Card. These are 3 of the most complex
methods in our project, as most game logic methods are found in these classes and their corresponding
subclasses. We used JUnit tests to test the game logic of these classes. It is worth highlighting that some
other classes might be regarded as even more complex (in terms of raw lines), like the ClientHandler class.
However, a lot of this code is working with JSON objects, and also, these types of classes are highly network
related and are therefore impractical at best and impossible at worst to test with JUnit test classes.

11

2.1.1 Game class testing

The Game class is the center of our application, where all game-related model classes come together to
compose the game. Examples of these classes are Player, Card, DrawPile, and DiscardPile. Although some
methods of the Game class include over-the-network communication, making Junit testing infeasible, most
of the methods in the Game class, such as getNextPlayer(), nextPlayer(), switchDirection(), and drawCard(), are
crucially important methods in the game flow, therefore, we created the GameTest class, which includes 2
main tests. Moreover, the methods containing network communication, are mostly invoking methods in
model classes, which can be individually tested.

Before running each of these test methods, we set up a scenario for the tests to use, using a setup method
with a @BeforeEach tag. In this method, we create an instance of Game, which will initialize all important
features of a game: the direction in which the game is played, handing out the first 7 cards to each player,
creating a new DrawPile and DiscardPile, and numerous other things. As the methods we want to test
require that the game has players, the setup method also creates players and adds them to the game. Before
being able to generate the players (HumanPlayers to be exact), we need to create corresponding
ClientHandler objects for all of them. This is because the HumanPlayer constructor takes a ClientHandler
object as a parameter. As this is a local game, the socket and the port parameters for the constructor of the
ClientHandler objects can be set to null. After this setup, the new players are added to the game.

The first test will assert whether methods getNextPlayer(), nextPlayer(), and switchDirection() work as intended.
To avoid calling methods that involve over-the-network communication, specifically in the initiateGame()
method, we have extracted the lines that generate a random integer index. This index is used for selecting
a random player to kick off the game. As in the setup method we created the array of players, the players
should now be in order. We can now call the getNextPlayer() method and asserts if the player which has the
position in the game of the generated number +1 is the same as the player returned by calling the method.
In the test, we are also calling the method switchDirection(), and after this, asserting if the direction was
changed by again calling the get next player method, which should now be the player on the random index
we generated.

The second performed test is for the drawCard() method. For this test, we simulate a player drawing a card
from the draw pile and moving it into the player’s hand. As we have not called the initiateGame() method in
the Game class, the hands of all players are still empty. This means that after drawCard() is called, there
should be one single card in the player’s hand. The limited number of tests that call several methods have
good coverage of the methods and classes, as pictured below:

Figure 2-1

2.1.2 Player class testing

Another class we tested is the Player class. This class contains the part of the game logic which stores the
hand of a certain player, contains the method to calculate the points the winner is awarded at the end of a
round, and the method playCard() which, in the case of an ActionCard, performs the action and removes the
card from the player's hand.

The setup for this method is very similar to the one performed in the game testing. A new game is created,
as well as the ClientHandlers needed to connect players to the game.

The first method tested is the playCard(). For this, we created a NumberCard just as a test object, added it to
the hand of the player, and then calling the playCard() method, using as parameters the simulated game and

12

the test card. To assert whether the instructions were performed successfully, we check whether the card
was removed from the game by the player.

One of the important methods we tested is from the ComputerPlayer class, which extends the Player. The
method is calculateBestWildcardColor(), which picks the best color for the ComputerPlayer to choose when
playing a Wild card. To check this method, we generated a few cards, one of each color and one extra green
one, and added them to the hand of the ComputerPlayer. After calling this method, we check whether the
picked color is green, as this is the most present color in the hand.

One last method checked here is the calculateTotalPoints(). Here we create a game of 2 players, one will be
the winner, and the other the loser of the round. We added a few cards to the hand of the loser, as the points
of these will be summed up and added as the points of the winner. Finally, we assert whether the method
calculated the points, which should equal to 78, considering the generated cards.

All these tests resulted in good coverage of the methods, as well as the lines, as pictured below:

Figure 2-2

2.1.3 Card class testing

Card class includes all the methods which handle the actions of a card. For this class, the most important
method to test is the isvalidMove() one. To check this method, we created two separate tests, one for
NumberCards and the other one for ActionCards. These 2 tests start by creating a game, which consequently
picks the first card to kick off the game. In the test for numbered cards, we create 2 test cards, one with the
same color and a different number, and the other, with different color and the same number. We then call
for the isvalidMove() of the class, and as at least one of the conditions is met, the tests should pass.

The same method is used for testing the isvalidMove() method for cards that are objects of type ActionCard.
However, to assure that more possible scenarios are met, we used a switch() to create several test cards for
each corresponding type.

Other methods we are testing in this class are getters and setters, as well as the toString() method. This last
one should return the action performed by an ActionCard or the number of a NumberCard in a string format.
This is checked by generating the cards and assessing whether the output matches the expected strings.

Due to the high number of possible cases, this method does not provide full line coverage, but the remaining
methods are tested by playing the game, as in section 2.2.

CardTest

Figure 2-3

2.1.4 CardPile class testing

One more class that we created Junit tests for is the CardPile class. This class is responsible for creating a
collection of cards and is extended by three classes. These are the Hand class, for holding the cards of a
player, the DiscardPile class, for holding all discarded cards, and the DrawPile class, for drawing cards.
For testing, we created a setup() method tagged with the @BeforeEach tag, as is usual with JUnit unit tests.
We create a new game in this method since DrawPile’s constructor requires & Game object as an argument.
Also in the constructor, the methods initiateNumberCards(), initiateColorActionCards(), initiateWildActionCards()
are called, so that the deck should be fully created and ready for testing.

13

The first test checks the constructor of the DrawPile, specifically if all cards are included in the pile. By
using the getter for this collection of cards and checking its size, we can assess whether the number of cards
is equal to 108 (following the official UNO base game rules). This checks all the mentioned methods that
were called in the constructor, albeit in an elementary form, without actually checking each card.

Another method tested is the pickCard() method of the DrawPile class, by assessing whether after calling it,
the number of cards in the draw pile decreased by one. The tested method also calls for the getRandomCard()
method from the same class. Although this whole test class only calls for 2 methods, these on their own
need to call the rest of methods in the class. This results in a method and line coverage of 100%.

Figure 2-4

2.2. System Testing

Some of the most important classes of our project, such as Client, Server, and their handlers, use over-the-
network communication. To test these classes, we considered it would be unfeasible to create Junit tests,
therefore, in order to still ensure that they are all working well, we created a main method that would invoke
several instances of the class Client, and one Server, in order to test them.

After we completed the main functionalities of the game, and we had a server and client running, most of
the testing was done by playing the game, in order to spot any edge cases, exceptions and errors that we
were not handling right. During this process, we spotted and fixed the following issues of game logic and
communication between the server and the clients:

2.2.1 After a game is finished, the player can join a new game

This first functional requirement was tested by playing enough rounds so that one of the players in game
becomes the winner. Although we had implemented a method for shutting down the game and removing
the players from it, this was not enough for them to start a new round. While playing, we noticed that after
the first game was finished players were not able to start a new round. This issue was on the client side, as
the server was receiving the “JOIN_ GAME” command, but a new queue was not set up. This was fixed by
adding an ArrayList called “lobby” on the server side. This list would receive the players at the beginning
of the game, it removes them when they join a queue for a certain game and adds them back in when the
game was finished.

2.2.2 Chat availability at all times

The chat of the game should be available to players at all times: while they are in the lobby, while they are
in the queue, and during the whole game play. Of course, the chats should only be visible to players in the
same gueue, same game, or if the player is in the lobby, to all players that are in the lobby. We tested this
feature by simulating all of the before mentioned scenarios. In order to do so, we set up a server and
connected a few clients to it. We set up clients that would simultaneously be in the same queue or game, as
well as clients that would be in different ‘locations’ on the server. As designed, while testing the chat was
only sending a player’s messages to other players that were respectively part of the same instance of game,
gueue, or part of the lobby, and not to all players connected to the server.

14

2.2.3 Not initializing the game direction at the beginning of each round.

We eventually identified unexpected behavior where the game’s playing direction (clockwise/counter-
clockwise) on the client side would either be null or incorrect. While this issue did not throw an exception,
we noticed while playing that when a reverse card was played, the direction was not changed. We then
recognized in our code that we were not initializing at the beginning of each round the direction in which
the game was played, therefore its value was null. This issue was in the IncomingHandler class, on the
client side, and we fixed it by setting the game direction in the command of a new round:

.print(jo)

.setGameDirection(GameDirection.

Figure 2-5

2.2.4 Wildcards not getting removed from the hand on the server side

This issue was noticed while playing the game, in the following scenario: a player was trying to play a wild
draw 4 card, but the server was sending an invalid move error, although in the client side the move seemed
to be valid (no other cards from the hand were playable). Going through the hand on the server side, we
noticed that the Wild cards were not removed from the client’s hand. This happened because the client was
sending a wildcard with Cardvalue “Wild”, but the CardColor was already set to the color the player was
choosing, instead of just CardColor.w. We fixed this problem by adding an “else” branch, where we were
checking just for the cards that were of type Wild, and also removing them from the hand. This modification
id represented by the else branch in the following code:

removeCard(Card card) {
ArraylList<Card> cardsCopy = Arraylis

(Card LloopCard ardsCopy) {

(LoopCard.g alue() == card.getValue() && loopCard.getColor() == card.getColor()) {

Figure 2-6

2.2.5 Casting ComputerPlayer as a HumanPlayer exception

In the WildDrawFour class that implements the Action interface, while running the game, the following
exception came up:

15

Figure 2-7

The highlighted part indicated to us that at some point in the execution, we were casting a ComputerPlayer
to a HumanPlayer. This exception happened during a particular edge case on the client side, when the first
card played was a Wildcard and the player was a ComputerPlayer. We noticed the mistake was in the last
“If” statement of the method. Instead of checking if the game.getNextPlayer() was a HumanPlayer, we should
check for the Player p, as this is also the one we will be sending the command to. The first picture below
shows the p variable:

Player p = game.getCurrentColor() == ? game.getCurrentPlayer() :
game.getNextPlayer()
Figure 2-8

The current color will only be set after the first card on the discard pile is placed. This means that if the first
card is an action card, the currentColor will still be null. The action will then be performed on the first player,
instead of the next player. Here we can see the modified if statement:

(p t HumanPlayer) {

((HumanPlayer) p).getHandler().sendObject(issueCardsCmd)

}
S

Figure 2-9

2.2.6 Creating a copy of the card instead of passing the card

We identified the following issue on a different edge case, the one where the game was picking a
WildDrawAction as the first card to be played. As the game rules mention, this card can never be the first
one to be placed on the discard pile at the start of a new round. While we did implement a check for this,
as seen in the method below (Picture 2-10), we should not have created a new card, as we do in line 5, as
when adding it to the DrawPile, we are adding a copy, and not the actual card from the pile.

(!validActionCard) {
Action action = ((ActionCard) card).getAction();
(action WildDrawAction) {
System. .println(
card = drawPile.pickCard()
addCard(card)
System. .println(
getTopCard())

Figure 2-10

To fix this small bug, we removed the line that was creating a new card and just passed to the addCard
method the card picked from the draw pile, as seen in the snippet below (Picture 2-11).

(action i s WildDrawAction) {
System. .println(
addCard(drawPile.pickCard())

System. .println(
getTopCard());
1

} {

Figure 2-11

16

2.2.7 Stack overflow errors

While building the option to play a game between only ComputerPlayers, we encountered the
StackOverflowError in two different spots. A stack overflow can occur when a recursive function calls itself
repeatedly to execute a set of instructions. This is because each time a method is called recursively, memory
space is taken up in the method’s stack. This is where all necessary data to execute a method is located.® In
a stack overflow error, it is usually the stack frame in the stack that causes the problem. This is where local
variables and function arguments are saved. Each thread, and thus, each instance of Game, gets its own
stack. When a function returns, we remove its stack frame. However, if a function is called recursively, the
data of every method call is saved in the stack. Since the first call of the recursive function did not return
something yet, the stack will become larger after every recursive call. At some point, if there is not a timely
return, the stack will become so large, that there is no space left for another recursion. Another recursive
call could then make the stack overflow. This is inappropriate behavior since it could pose a risk to the data
integrity of other parts of the software (i.e., it could overwrite other data saved in memory). Therefore, to
prevent an actual overflow, if the number of calls exceeds the designated memory for the stack, a
StackOverflowError Will occur. This could result from a design flaw, such as a recursive function that ends up
in an infinite loop. This is why a stack overflow error is usually a good thing: it is preventing infinite loops.
However, it could also be the case that this error occurs during a process that is not a design flaw, but rather
a recursion so deep that Java’s default stack size (256kb for a modern Windows installation) is not enough
for the execution.? We found that this was the case while playing a computer game (a game with only
ComputerPlayers playing against each other).

One stackOverflowError we discovered while running a game with only ComputerPlayers was an edge case.
While playing the game, cards are being moved from the DrawPile to the player’s Hands to the DiscardPile.
Once the DrawPile is empty, all the cards in the DiscardPile are added back to the DrawPile. To pick a
card to place as the first card on the draw pile, we just get a random one from the pile, as discussed in
section 1.2.7. However, in this very particular case, the only cards on the discard pile at the time that the
DrawPile was emptied, were two wild draw four cards, which are invalid first cards. Therefore, the method
would continuously loop through the cards in the draw pile, trying to pick a new top card, but as there would
be no valid card, it would just keep calling the same method, until the stack would be full.

To fix this, we decided to surround the method call that caused the problem with a try-catch block, to catch
this StackOverflowError. In the catch block, besides sending out a message for the players, the DrawPile is
reset and the whole game is restarted. This implementation of the try-catch block is seen in figure 2-12. The
stack trace which represents the initial exception can be seen in figure 2-13.

1 Jacob Sorber. (2020, December 23). The Call Stack and Stack Overflows (example in C). YouTube.
https://youtube.com/watch?v=jVVzSBkbfdiw

2 Understanding Threads and Locks. (n.d.).
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/thread_basics.html

17

Card firstCard

try {
firstCard = .placeFirstCard(

} catch (StackOverflowError e) {
System. .printin(

.clearPile()
resetDrawPile()
initiateGame()

Figure 2-12

We would like to emphasize that catching a StackOverflowError is rarely the best practice. In this case, we
could have also resolved the error altogether by checking whether the draw pile only contained one or two
wild draw four cards. However, given the time constraints, we opted for this solution.

Figure 2-13

18

After solving this StackOverflowError, another one appeared during the execution of a computer game. On
this occasion, however, the error did not occur due to a design flaw.

In the Game class, the playCard() method is called first with 2 arguments, the game in which the card is
played, as well as the player which is playing the card. To simplify this method which is already quite
complex, we created a separate method, handleComputerPlayer(). This method checks if the next player is a
computer player, and if it is, it first checks whether a card can be played. If this is the case, the playCard()
method is called again in Game. Otherwise, the drawCard() method in Game is called. So when playing a
game with only computer players, the handleComputerPlayer() method ends up calling either playCard() or
drawCard(), which calls handleComputerPlayer() again after execution is finished. This results in semi-
recursive method calls (between two methods rather than one). If the computer players do not manage to
finish the game after a certain amount of turns, the call stack will be filled up and a StackOverflowError will
be thrown. This time, we recognized that there were two ways to fix it.

First off, we made the computer player smarter. The first change made was to choose an ActionCard over
the NumberCard. To do this, we simply first check whether the hand contains an ActionCard, and set the
chosen card to it, before checking for the NumberCards. Another thing that we added was an algorithm to
check whether a Wild action is a valid next card, which we were not previously checking for. This last part,
paired with the calculateBestWildcardColor() method improved our computer player’s moves.

Secondly, we found that even though making the computer player smarter helped, we still got a
StackOverflowError regularly. We recognized that this was not due to a design flaw in our code, but rather, a
limitation of the Java Virtual Machine. To fix this, we increased the stack size and did some trial runs to
find the optimal stack size.® Eventually, we settled on 1 megabyte. To run our game with a stack size of 1
megabyte, we provided details in the readme file in the code repository.

Academic skills report

1. How was your planning influenced by your experiences with the planning and time
writing during the Design project?

Wouter

For me, it did not make that much of a difference. | already had some planning lessons in high school, a
couple of years before the final year, so | knew some of the strategies and I also knew what strategy suited
me best. However, it gave me some new insights in that I usually plan a bit too much time for things like
math and too little time for things like programming. This is usually because I like to try and one-up myself,
because that is how I learn new things. This time around, I tried to plan more time than | thought would be
necessary for programming, to make up for this.

lulia

The planning and time writing was a great reflection opportunity. Before, even if | was planning my tasks
and keeping track of them, because | was not putting them down on paper, they seemed more overwhelming
than they were in reality. | learned that explicitly listing my tasks and giving an approximate time needed
to finish them helps with handling complex assignments. Therefore, while working on the project, | created

% Understanding Threads and Locks. (n.d.).
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/thread_basics.html

19

a list of to-do’s, which helped me with the clarity needed to complete all the tasks. I think it was especially
important in the process of developing the game that we planned our time carefully, and started early on
with the design.

2. To what extent did your planning correspond to the actual progress during the project
weeks? What made you deviate from your planning?

Our planning corresponded quite well to our actual progress on the project. However, once we were done
implementing everything, we needed a couple of days to debug and do a lot of testing, especially by just
playing the game a lot of times. Almost every time, we found a new bug. By simply making the server log
every command that comes in and every action that is performed, we could find bugs relatively easy. These
logs were largely already in place since the code for the initial TUI (when we did not implement the
networking yet) would already do this. We left this code there, so it’s also possible to see on the server what
happens. Overall, debugging took more time than we anticipated, but we were able to plan around this very
well, because our planning was quite broad.

Something that took way less time than anticipated, was the computer player. Since we were not sure we
would participate in the tournament, as we could not estimate whether our game would be working by then,
we decided on making a bare-bones computer player. It turned out that the requirements for making a
functioning computer player were quite simple, only choosing a good wildcard color to play took a bit more
time, but barely.

We do not think that we had a period where we had a loss of momentum. We knew that we would not spend
any time on the project during the two weeks of holiday. The same goes for week 7 since we both had to
focus on math. In week 8, although we focused on the programming test, we were able to finish the
documentation and enums of the protocol on Monday. This was the deadline that we set with our mentor
group. We feel like we spent some more time on the protocol than necessary, but that was mainly because
we were very open to answering questions from other groups. We also posted a lot of code snippets and
examples to help the other groups communicate using the protocol.

3. Which counter measures did you take to compensate for deviations from your original
planning? What was the impact of this on the intended scope or quality of the project?
We did not have major deviations from our original planning, and therefore we did not have to take any
counter measures. The only deviation is that we wanted to finish the game by Sunday of week 9, but we
ended up also needing the Monday of week 10, meaning that we would have two days for the report instead
of three. This was fine, since taking three days for the reporting was a rather broad estimate. We do not
think that this made a difference on the quality of the project.

4. What did you learn from this experience for your next (project) planning? Take your
answers to the other questions into account and ask yourself how you would want to
prevent this or deal with this next time.

Wouter

Usually, I pick a partner that | know can plan very well. This (while sounding contradictory) means that we
do not have to plan in too much detail. We both know what is going on and we both know when something
must be finished. We do not have to come together solely for the purpose of making a planning. However,
I find it useful to make a broad planning for myself, and also for my group in general, like we did for this
assignment. To be more specific, | learnt from this project better recognize what to plan and what not to
plan. Things like debugging are extremely hard to plan, since you will never know what you can encounter.
Only taking a rough estimate for the time necessary to debug is possible. On the other hand, for the project,

20

we knew what the requirements were, and we knew that we would need 2-3 days to make a report that was
up to our standards.

lulia

For me, planning for this project has been a great lesson in organizing time and resources for a long time,
while working on a bigger project. While last module’s projects were less complex in my opinion, for this
one we had a bigger workload for just 2 people, so it was important that we keep up with the deadlines for
the milestones and the final submission. Although 7 weeks seems like plenty of time to develop the game,
it was important to keep up with all other subjects and unforeseeable situations. Therefore, we were
constantly working on the project, with a break during the holidays, and tried not to leave an unmanageable
amount of work for the final weeks. This planning also showed, once again, how important it is to budget
enough time for tasks that are not easy to estimate, so that if needed, more time can be spent on them.

5. Suppose that next year you are a teaching assistant for this project. Give at least two
do’s and don’ts that you would tell your students to help them with their planning.

Wouter
Do’s:

1. First off, I would tell my students to try and write down everything that they think that they must
do. Then | would ask them to think about whether something is plannable or not, e.g., debugging
vs. participating in the tournament. The things that are not plannable, 1 would advise them to think
about a reasonable, a minimum, and a maximum time estimate, and then use the maximum time
estimate in their planning. This means that they won’t have to compromise on something else if
something takes longer than expected.

2. Secondly, I would advise them to make a planning before the Christmas holidays, since that is
around the time that they have the deadline for the game logic. | saw some of my friends struggle
with that deadline, and some were still struggling with the game logic in week 9 (1 week before the
final deadline).

Don’ts:

1. First, I would advise them to not try to make a planning immediately at the start of the project. |
would advise them to deliver the class structure at the first deadline first, since the activities that
they must do for that deadline are not really plannable, only with a very rough time estimate. The
deadline will provide them with valuable feedback.

2. Second off, | would advise my students to try and not shuffle their planning that much after they
made it. Of course, they need to leave some room for uncontrolled events, but they should not
constantly procrastinate on one thing, while doing the other (also required) things instead.

lulia
Do’s:

1. | believe it is especially important to consider all other subjects while making the planning for the
project. Therefore, while making the planning in the first half of the module, it is important to
consider all other exams and deadlines they might have, as well as potential resits.

2. 1 would advise my students to be consistent with following the rough planning they made. It is
important to deliver on time the 2 milestones, as this is a first indicator that you are on the right
track timewise with the project. If you finish a task before the expected time, start on the next one,

21

Don'ts:

22

even if it is before the planned time. This is especially important because of how hard it might be
to estimate the duration of a task, so it’s better to take advantage of any extra time.

Do not schedule most of the work for the project for the final weeks of the module. This is a mistake
I've seen some of my friends made, and it would cause great stress and it might be hard to repair.
Do not forget to include rest time, as it is important to have enough time to also spend time away
from work, especially during the holiday season.

Do not procrastinate, regardless of how easy it is to do so. The budgeted time should be enough to
cover all tasks, and postponing them might create an overload that can be unmanageable.

Appendix A: Academic Skills planning

Week # Items Assignee(s)
4 Class structure: lulia & Wouter
= Cards
= Card piles
= Players
= (Class diagram
5 Game logic: lulia & Wouter

= Cards (number & action)

= Card piles (draw pile,
discard pile and hand)

= Exceptions

= JUnit test for draw pile

6 Game logic: lulia & Wouter

= Player abstract class and
HumanPlayer

= Drawing and playing cards

= Playing action cards

Other:
= TUI
7 Focusing on math test lulia & Wouter
= Documentation of protocol
8 Focusing on programming test lulia & Wouter
= Protocol enums and
examples

= Computer player logic
= Split codebase wup into
model, view, and controller

9 = Convert current app into | lulia & Wouter
server
= Create client app

Create TUI for client

= Implement all protocol
commands

= Convert own enums to use
the protocol’s enums

= Create chat

= |mplement multi game

server
10 » Implementation of computer | lulia & Wouter
player
= Create lobby functionality
= Fix bugs

= Writing report
o Design (Wouter)
o Testing (lulia)
o Academic skills

23

