diff --git a/Q2main.py b/Q2main.py index b3159a4dd363c1c2d1c9b1bac7b0bc910f0a1390..ee85e4a387eb1b9921a15cfcf0200c3ebb203e6e 100644 --- a/Q2main.py +++ b/Q2main.py @@ -48,7 +48,7 @@ class ImageProcessor: return red_mask, yellow_mask, green_mask -def detect_blobs(mask, min_sigma=3, max_sigma=15, num_sigma = 3, threshold=0.5): +def detect_blobs(mask, min_sigma=5, max_sigma=50, num_sigma = 10, threshold=0.5): mask = mask.astype(np.float64) / 255.0 #print('mask made') blobs = blob_log(mask, min_sigma=min_sigma, max_sigma=max_sigma, num_sigma=num_sigma, threshold=threshold) diff --git a/Q3main.py b/Q3main.py new file mode 100644 index 0000000000000000000000000000000000000000..485bda41b96796b4c2e74061e1b3a94d06faafe5 --- /dev/null +++ b/Q3main.py @@ -0,0 +1,27 @@ +import scipy.io + +# Load the .mat file +mat_file = 'emg_data_walking.mat' +data = scipy.io.loadmat(mat_file) + +# Display the keys in the loaded structure +print("Keys in the loaded .mat file:", data.keys()) + +# Analyze the structure of the data (check what is inside the 'data' dictionary) +# This will help you understand what variables are present +for key, value in data.items(): + print(f"Key: {key}, Type: {type(value)}") + print(f"Value shape: {value.shape if hasattr(value, 'shape') else 'N/A'}\n") + +# Now, assuming the EMG channels are contained in a variable called 'emgChannels' +# You will need to adjust the field name depending on the structure of your file +if 'emgChannels' in data: + emg_channels = data['emgChannels'] + + # If 'emgChannels' contains the names, extract and display them + if isinstance(emg_channels, np.ndarray) and emg_channels.ndim == 2: + print("\nEMG Channel Names:") + for channel in emg_channels.flatten(): + print(channel) +else: + print("\n'EMG channels' not found in the data. Please check the structure.") \ No newline at end of file