Skip to content
Snippets Groups Projects
homomorph+iso.xml 57.5 KiB
Newer Older
Georg Loho's avatar
Georg Loho committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
<?xml version="1.0"?>
<chapter xmlns:xi="http://www.w3.org/2001/XInclude" xml:id="homomorphisms" permid="JXG">
  <title>Homomorphisms</title>
  <introduction permid="aAs">
    <p>
      Basic learning goals
	<ol>
	  <li>
	    Recognizing and checking group homomorphisms. 
	  </li>
	  <li>
	    Basic properties of group homomorphisms. 
	  </li>
	  <li>
	    Recognizing, checking and basic properties of group isomorphisms. 
	  </li>
	  <li>
	    Characterization of cyclic and abelian groups (Fundamental Theorem of Finite Abelian Groups). 
	  </li>
	  <li>
	    Normal subgroups, their interplay with homomorphisms. 
	  </li>
	  <li>
	    Free groups and generated groups. 
	  </li>
	</ol>
      </p>
    
    <p permid="ato">
      One of the most fundamental ideas of algebra is the concept of a homomorphism.
      In the study of groups, we already identified structures of certain operations on sets.
      Now, the next crucial insights come from the study of structure-preserving maps.
      This generalizes the idea of linear maps between vector spaces as considered in linear algebra.
      Recall that linear maps take the sum of two vectors to the sum of their images.
      This idea is relaxed to maps taking composition in one group to the composition in another group. 
    </p>
  </introduction>

  <section xml:id="homomorph-section-group-homomorphisms" permid="uOI">
      <title>Group Homomorphisms</title>
    <p permid="pgN">
      A <term>homomorphism</term><idx><h>Group</h><h>homomorphism of</h></idx><idx><h>Homomorphism</h><h>of groups</h></idx> between groups <m>(G, \cdot)</m> and
      <m>(H, \circ)</m> is a map <m>\phi :G \rightarrow H</m> such that
      <me permid="Stq">
        \phi( g_1 \cdot g_2 ) = \phi( g_1 ) \circ \phi( g_2 )
      </me>
      for <m>g_1, g_2 \in G</m>.
      The range of <m>\phi</m> in <m>H</m> is called the
      <term>homomorphic image</term>
          <idx><h>Homomorphic image</h></idx>
      of <m>\phi</m>.
    </p>
    <example>
      <p>
	First note that a vector space is an abelian group.
	For the special vector space <m>\mathbb{R}^k</m>, one can directly see this from <xref ref="exercise-external-direct-products"/> and the basic insight that <m>(\mathbb{R},+)</m> is an abelian group. 
      </p>
      <p>
	Now, recall the map from <xref ref="matrix-example-linear-transform"/> given by
	 <m>T \colon {\mathbb R}^2 \rightarrow {\mathbb R}^2</m> with
          <me permid="RNa">
            T(x_1, x_2) = (2 x_1 + 5 x_2, - 4 x_1 + 3 x_2) \enspace .
          </me>
	  It maps the abelian group <m>(\mathbb{R}^2,+)</m> to itself while preserving the additive structure, that is
	  <me>
	    T(x_1 + y_1, x_2 + y_2) = T(x_1, x_2) + T(y_1, y_2) \enspace .
	  </me>
      </p>
      <p>
	More generally, recall from the introduction of <xref ref="intro-and-applications"/> that a linear map <m>T : {\mathbb R}^n \rightarrow {\mathbb R}^m</m> fulfills <m>T({\mathbf x}+{\mathbf y}) = T({\mathbf x}) + T({\mathbf y})</m>.
	Hence, a linear map is a homomorphism between the additive structure of two vector spaces. 
	Note that we did not require compatibility with scalar multiplication as we only care about the additive structure of a vector space here. 
      </p>
    </example>

    <p>
      More generally, we use homomorphisms to study relationships between groups. 
    </p>

    <example>
    <p>
      The symmetric group <m>S_n</m> and the group
      <m>{\mathbb Z}_2</m> are related by the fact that <m>S_n</m> can be divided into even and odd permutations that exhibit a group structure like that <m>{\mathbb Z}_2</m>,
      as shown in the following multiplication table.
    </p>
    
    <p permid="umf">
      <me permid="yAz">
        \begin{array}{c|cc}
        &amp; \text{even} &amp; \text{odd} \\ \hline
        \text{even} &amp; \text{even} &amp; \text{odd} \\
        \text{odd}  &amp; \text{odd}  &amp; \text{even}
        \end{array}
      </me>
    </p>
    </example>
    
    <example xml:id="homomorph-example-zn" permid="kZx">
      <p permid="QZC">
        Let <m>G</m> be a group and <m>g \in G</m>.
        Define a map <m>\phi : {\mathbb Z} \rightarrow G</m> by <m>\phi( n ) = g^n</m>.
        Then <m>\phi</m> is a group homomorphism, since
        <me permid="eHI">
          \phi( m + n ) = g^{ m + n} = g^m g^n = \phi( m ) \phi( n )
        </me>.
        This homomorphism maps <m>{\mathbb Z}</m> onto the cyclic subgroup of <m>G</m> generated by <m>g</m>.
      </p>
    </example>

    <example xml:id="homomorph-example-gl2" permid="RgG">
      <p permid="xgL">
        Let <m>G = GL_2( {\mathbb R })</m>.
        If
        <me permid="KOR">
          A =
          \begin{pmatrix}
          a &amp; b \\
          c &amp; d
          \end{pmatrix}
        </me>
        is in <m>G</m>, then the determinant is  nonzero;
        that is, <m>\det(A) = ad - bc \neq 0</m>.
        Also, for any two elements <m>A</m> and <m>B</m> in <m>G</m>,
        <m>\det(AB) = \det(A) \det(B)</m>.
        Using the determinant, we can define a homomorphism
        <m>\phi : GL_2( {\mathbb R }) \rightarrow {\mathbb R}^\ast</m> by <m>A \mapsto \det(A)</m>.
      </p>
    </example>

    <example xml:id="homomorph-example-circle-group" permid="xnP">
      <p permid="dnU">
        Recall that the circle group
        <m>{ \mathbb T}</m> consists of all complex numbers <m>z</m> such that <m>|z|=1</m>.
        We can define a homomorphism <m>\phi</m> from the additive group of real numbers <m>{\mathbb R}</m> to
        <m>{\mathbb T}</m> by <m>\phi : \theta \mapsto \cos \theta + i \sin \theta</m>.
        Indeed,
        <md permid="qWa">
          <mrow>\phi( \alpha + \beta ) &amp; = \cos( \alpha + \beta ) + i \sin( \alpha + \beta )</mrow>
          <mrow>&amp; = (\cos \alpha \cos \beta - \sin \alpha \sin \beta)  + i( \sin \alpha  \cos \beta + \cos \alpha \sin \beta )</mrow>
          <mrow>&amp; = (\cos \alpha + i \sin \alpha )(\cos \beta + i \sin \beta)</mrow>
          <mrow>&amp; = \phi( \alpha ) \phi( \beta )</mrow>
        </md>.
        Geometrically,
        we are simply wrapping the real line around the circle in a group-theoretic fashion.
      </p>
    </example>

    <p>
      The following proposition lists some basic properties of group homomorphisms.
    </p>

    <proposition xml:id="proposition-properties-homomorphism-group">
      <statement>
        <p permid="kSt">
          Let <m>\phi : G_1 \rightarrow G_2</m> be a homomorphism of groups.
          <ol permid="TFN">
            <li permid="Mbo">
              <p permid="rde">
                If <m>e</m> is the identity of <m>G_1</m>,
                then <m>\phi( e)</m> is the identity of <m>G_2</m>.
              </p>
            </li>

            <li permid="six">
              <p permid="Xkn">
                For any element <m>g \in G_1</m>,
                <m>\phi( g^{-1}) = [\phi( g )]^{- 1}</m>. 
              </p>
            </li>

	    <li>
	      <p>
		For any element <m>g \in G_1</m> and <m>n \in \mathbb{Z}</m>, 
                <m>\phi( g^{n}) = [\phi( g )]^{n}</m>.
	      </p>
	    </li>
	    
            <li permid="YpG">
              <p permid="Drw">
                If <m>H_1</m> is a subgroup of <m>G_1</m>,
                then <m>\phi( H_1 )</m> is a subgroup of <m>G_2</m>. 
              </p>
            </li>
          </ol>
        </p>
      </statement>
    </proposition>

    <p permid="NJx">
      Let <m>\phi : G \rightarrow H</m> be a group homomorphism and suppose that <m>e</m> is the identity of <m>H</m>.
      By <xref ref="proposition-properties-homomorphism-group"/>,
      <m>\phi^{-1} ( \{ e \} )</m> is a subgroup of <m>G</m>.
      This subgroup is called the <term>kernel</term><idx><h>Kernel</h><h>of a group homomorphism</h></idx><idx><h>Homomorphism</h><h>kernel of a group</h></idx> of <m>\phi</m> and will be denoted by <m>\ker \phi</m>.

      <notation>
        <usage><m>\ker \phi</m></usage>
        <description>kernel of <m>\phi</m></description>
      </notation>
    </p>
      
    <example xml:id="homomorph-example-g2-to-r" permid="duY">
      <p permid="Jvd">
        Let us examine the homomorphism
        <m>\phi : GL_2( {\mathbb R }) \rightarrow {\mathbb R}^\ast</m> defined by <m>A \mapsto \det( A )</m>.
        Since <m>1</m> is the identity of <m>{\mathbb R}^\ast</m>,
        the kernel of this homomorphism is all
        <m>2 \times 2</m> matrices having determinant one.
        That is, <m>\ker \phi = SL_2( {\mathbb R })</m>.
      </p>
    </example>

    <example xml:id="homomorph-example-kernel" permid="JCh">
      <p permid="pCm">
        The kernel of the group homomorphism <m>\phi : {\mathbb R} \rightarrow {\mathbb C}^\ast</m> defined by
        <m>\phi( \theta ) = \cos \theta + i \sin \theta</m> is <m>\{ 2 \pi n : n \in {\mathbb Z} \}</m>.
        Notice that <m>\ker \phi \cong {\mathbb Z}</m>.
      </p>
    </example>

    <example xml:id="homomorph-example-z7" permid="pJq">
      <p permid="VJv">
        Suppose that we wish to determine all possible homomorphisms <m>\phi</m> from
        <m>{\mathbb Z}_7</m> to <m>{\mathbb Z}_{12}</m>.
        Since the kernel of <m>\phi</m> must be a subgroup of <m>{\mathbb Z}_7</m>,
        there are only two possible kernels,
        <m>\{ 0 \}</m> and all of <m>{\mathbb Z}_7</m>.
        The image of a subgroup of
        <m>{\mathbb Z}_7</m> must be a subgroup of <m>{\mathbb Z}_{12}</m>.
        Hence, there is no injective homomorphism;
        otherwise, <m>{\mathbb Z}_{12}</m> would have a subgroup of order <m>7</m>,
        which is impossible.
        Consequently,
        the only possible homomorphism from <m>{\mathbb Z}_7</m> to
        <m>{\mathbb Z}_{12}</m> is the one mapping all elements to zero.
      </p>
    </example>

    <example xml:id="homomorph-example-gn" permid="VQz">
      <p permid="BQE">
        Let <m>G</m> be a group.
        Suppose that <m>g \in G</m> and <m>\phi</m> is the homomorphism from
        <m>{\mathbb Z}</m> to <m>G</m> given by <m>\phi( n ) = g^n</m>.
        If the order of <m>g</m> is infinite,
        then the kernel of this homomorphism is <m>\{ 0 \}</m> since <m>\phi</m> maps
        <m>{\mathbb Z}</m> onto the cyclic subgroup of <m>G</m> generated by <m>g</m>.
        However, if the order of <m>g</m> is finite,
        say <m>n</m>,
        then the kernel of <m>\phi</m> is <m>n {\mathbb Z}</m>.
      </p>
    </example>
  </section>

  <section xml:id="isomorph-section-definitions" permid="Evp">
    <title>Isomorphisms</title>
    <introduction>
      <p>
      Many groups may appear to be different at first glance,
      but can be shown to be the same by a simple renaming of the group elements.
      For example,
      <m>{\mathbb Z}_4</m> and the subgroup of the circle group
      <m>{\mathbb T}</m> generated by <m>i</m> can be shown to be the same by demonstrating a one-to-one correspondence between the elements of the two groups and between the group operations.
      In such a case we say that the groups are isomorphic. 
      This is exactly the case when there is a bijective homomorphism between the groups, i.e.,  whose kernel is trivial. 
    </p>
  </introduction>

    <introduction>
      <p>
        Two groups <m>(G, \cdot)</m> and
        <m>(H, \circ)</m> are <term>isomorphic</term>
        <idx><h>Group</h><h>isomorphic</h></idx>
        if there exists a group homomorphism
	<m>\phi : G \rightarrow H</m>
	that is a one-to-one and onto map. 
        If <m>G</m> is isomorphic to <m>H</m>,
        we write <m>G \cong H</m>.
        <notation>
          <usage><m>G \cong H</m></usage>
          <description><m>G</m> is isomorphic to a group <m>H</m></description>
        </notation>

        The map <m>\phi</m> is called an <term>isomorphism</term>.
            <idx><h>Group</h><h>isomorphism of</h></idx>
            <idx><h>Isomorphism</h><h>of groups</h></idx>
      </p>
    </introduction>

      <example xml:id="isomorph-example-z4" permid="gha">
        <p permid="Qaa">
          To show that <m>{\mathbb Z}_4 \cong \langle i \rangle</m>,
          define a map <m>\phi: {\mathbb Z}_4 \rightarrow \langle i \rangle</m> by <m>\phi(n) = i^n</m>.
          We must show that <m>\phi</m> is bijective and preserves the group operation.
          The map <m>\phi</m> is one-to-one and onto because
          <md permid="EJX">
            <mrow>\phi(0) &amp; = 1</mrow>
            <mrow>\phi(1) &amp; = i</mrow>
            <mrow>\phi(2) &amp; = -1</mrow>
            <mrow>\phi(3) &amp; = -i</mrow>
          </md>.
          Since
          <me permid="YCO">
            \phi(m + n) = i^{m+n} = i^m i^n = \phi(m) \phi( n)
          </me>,
          the group operation is preserved.
        </p>
      </example>

      <example xml:id="isomorph-example-real" permid="Moj">
        <p permid="whj">
          We can define an isomorphism <m>\phi</m> from the additive group of real numbers
          <m>( {\mathbb R}, + )</m> to the multiplicative group of positive real numbers 
          <m>( {\mathbb R^+}, \cdot )</m> with the exponential map; that is,
          <me permid="kRg">
            \phi( x + y) = e^{x + y} = e^x e^y = \phi( x ) \phi( y)
          </me>.
          Of course, we must still show that <m>\phi</m> is one-to-one and onto,
          but this can be determined using calculus.
        </p>
      </example>

      <example xml:id="isomorph-example-rational" permid="svs">
        <p permid="cos">
          The integers are isomorphic to the subgroup of
          <m>{\mathbb Q}^\ast</m> consisting of elements of the form <m>2^n</m>.
          Define a map <m>\phi: {\mathbb Z} \rightarrow {\mathbb Q}^\ast</m> by <m>\phi( n ) = 2^n</m>.
          Then
          <me permid="QYp">
            \phi( m + n ) = 2^{m + n} = 2^m 2^n = \phi( m ) \phi( n )
          </me>.
          By definition the map <m>\phi</m> is onto the subset
          <m>\{2^n :n \in {\mathbb Z} \}</m> of  <m>{\mathbb Q}^\ast</m>.
          To show that the map is injective,
          assume that <m>m \neq n</m>.
          If we can show that <m>\phi(m) \neq \phi(n)</m>, then we are done.
          Suppose that <m>m \gt n</m> and assume that <m>\phi(m) = \phi(n)</m>.
          Then <m>2^m = 2^n</m> or <m>2^{m - n} = 1</m>,
          which is impossible since <m>m - n \gt 0</m>.
        </p>
      </example>

      <example xml:id="isomorph-example-units" permid="YCB">
        <p permid="IvB">
          The groups <m>{\mathbb Z}_8</m> and
          <m>{\mathbb Z}_{12}</m> cannot be isomorphic since they have different orders;
          however, it is true that <m>U(8) \cong U(12)</m>.
          We know that
          <md permid="xfy">
            <mrow>U(8) &amp; = \{1, 3, 5, 7 \}</mrow>
            <mrow>U(12) &amp; = \{1, 5, 7, 11 \}</mrow>
          </md>.
          An isomorphism <m>\phi : U(8) \rightarrow U(12)</m> is then given by
          <md permid="dmH">
            <mrow>1 &amp; \mapsto  1</mrow>
            <mrow>3 &amp; \mapsto  5</mrow>
            <mrow>5 &amp; \mapsto  7</mrow>
            <mrow>7 &amp; \mapsto  11</mrow>
          </md>.
          The map <m>\phi</m> is not the only possible isomorphism between these two groups.
          We could define another isomorphism <m>\psi</m> by <m>\psi(1) = 1</m>,
          <m>\psi(3) = 11</m>, <m>\psi(5) = 5</m>, <m>\psi(7) = 7</m>.
          In fact, both of these groups are isomorphic to <m>{\mathbb Z}_2 \times {\mathbb Z}_2</m>
          (see <xref ref="groups-example-z2xz2"/> in <xref ref="groups"/>).
        </p>
      </example>

      <example xml:id="isomorph-example-not-isomorph" permid="EJK">
        <p permid="oCK">
          Even though <m>S_3</m> and
          <m>{\mathbb Z}_6</m> possess the same number of elements,
          we would suspect that they are not isomorphic,
          because <m>{\mathbb Z}_6</m> is abelian and <m>S_3</m> is nonabelian.
          To demonstrate that this is indeed the case,
          suppose that <m>\phi : {\mathbb Z}_6 \rightarrow  S_3</m> is an isomorphism.
          Let <m>a , b \in S_3</m> be two elements such that <m>ab \neq ba</m>.
          Since <m>\phi</m> is an isomorphism,
          there exist elements <m>m</m> and <m>n</m> in <m>{\mathbb Z}_6</m> such that
          <me permid="JtQ">
            \phi( m ) = a \quad \text{and} \quad \phi( n ) = b
          </me>.
          However,
          <me permid="pAZ">
            ab = \phi(m ) \phi(n) = \phi(m + n) = \phi(n + m) = \phi(n ) \phi(m) = ba
          </me>,
          which contradicts the fact that <m>a</m> and <m>b</m> do not commute.
        </p>
      </example>

      <theorem xml:id="isomorph-theorem-1" permid="bxh">
        <statement>
          <p permid="idE">
            Let <m>\phi : G \rightarrow H</m> be an isomorphism of two groups.
            Then the following statements are true.

            <ol permid="gvv">
              <li permid="Cdz">
                <p permid="UQX">
                  <m>\phi^{-1} : H \rightarrow G</m> is an isomorphism.
                </p>
              </li>

              <li permid="ikI">
                <p permid="AYg">
                  <m>|G| = |H|</m>.
                </p>
              </li>

              <li permid="OrR">
                <p permid="hfp">
                  If <m>G</m> is abelian, then <m>H</m> is abelian.
                </p>
              </li>

              <li permid="uza">
                <p permid="Nmy">
                  If <m>G</m> is cyclic, then <m>H</m> is cyclic.
                </p>
              </li>

              <li permid="aGj">
                <p permid="ttH">
                  If <m>G</m> has a subgroup of order <m>n</m>,
                  then <m>H</m> has a subgroup of order <m>n</m>.
                </p>
              </li>
            </ol>
          </p>
        </statement>

        <proof>
          <p>
            Assertions (1) and (2) follow from the fact that <m>\phi</m> is a bijection.
          </p>
          <p permid="TZZ">
            (3) Suppose that <m>h_1</m> and <m>h_2</m> are elements of <m>H</m>.
            Since <m>\phi</m> is onto,
            there exist elements <m>g_1, g_2 \in G</m> such that
            <m>\phi(g_1) = h_1</m> and <m>\phi(g_2) = h_2</m>.
            Therefore,
            <me permid="VIi">
              h_1 h_2 = \phi(g_1) \phi(g_2) =  \phi(g_1 g_2) = \phi(g_2 g_1) = \phi(g_2) \phi(g_1) = h_2 h_1
            </me>.
          </p>
	  <p>
	    (4)
	    Let <m>g</m> be a generator of <m>G</m>.
	    Then
	    <me>
	      \phi\left(G\right) = \phi\left(\{g^k \mid k \in \mathbb{Z}\}\right) = \{\phi(g^k) \mid k \in \mathbb{Z}\} \enspace .
	    </me>
	    Since <m>\phi(G) = H</m>, we get from <xref ref="proposition-properties-homomorphism-group"/> that
	    <me>
	      H = \{\phi(g^k) \mid k \in \mathbb{Z}\} = \{\phi(g)^k \mid k \in \mathbb{Z}\} \enspace .
	    </me>
	    Therefore, also <m>H</m> is cyclic and the generators of <m>G</m> and <m>H</m> are in bijection. 
	  </p>
	  <p>
	  (5)
	  Let <m>G_1</m> be a subgroup of <m>G</m> of order <m>n</m>.
	  Then <m>\phi(G_1)</m> is a subgroup of <m>H</m> by <xref ref="proposition-properties-homomorphism-group"/>.
	  Since <m>\phi</m> is a bijection, this subgroup has cardinality <m>|\phi(G_1)| = |G_1| = n</m>. 
	  </p>
        </proof>
      </theorem>

      <p permid="CGp">
        We are now in a position to characterize all cyclic groups.
      </p>

      <theorem xml:id="isomorph-theorem-2" permid="HEq">
        <statement>
          <p permid="OkN">
            All cyclic groups of infinite order are isomorphic to <m>{\mathbb Z}</m>.
          </p>
        </statement>

        <proof permid="pAM">
          <p permid="Ahi">
            Let <m>G</m> be a cyclic group with infinite order and suppose that <m>a</m> is a generator of <m>G</m>.
            Define a map <m>\phi : {\mathbb Z} \rightarrow  G</m> by <m>\phi : n \mapsto a^n</m>.
            Then
            <me permid="BPr">
              \phi( m+n ) = a^{m+n} = a^m a^n = \phi( m ) \phi( n )
            </me>.
            To show that <m>\phi</m> is injective,
            suppose that <m>m</m> and <m>n</m> are two elements in
            <m>{\mathbb Z}</m>, where <m>m \neq n</m>.
            We can assume that <m>m \gt n</m>.
            We must show that <m>a^m \neq a^n</m>.
            Let us suppose the contrary;
            that is, <m>a^m = a^n</m>.
            In this case <m>a^{m - n} = e</m>, where <m>m - n \gt 0</m>,
            which contradicts the fact that <m>a</m> has infinite order.
            Our map is onto since any element in <m>G</m> can be written as <m>a^n</m> for some integer <m>n</m> and <m>\phi(n) = a^n</m>.
          </p>
        </proof>
      </theorem>

      <theorem xml:id="isomorph-theorem-3" permid="nLz">
        <statement>
          <p permid="urW">
            If <m>G</m> is a cyclic group of order <m>n</m>,
            then <m>G</m> is isomorphic to <m>{\mathbb Z}_n</m>.
          </p>
        </statement>

        <proof permid="VHV">
          <p permid="gor">
            Let <m>G</m> be a cyclic group of order <m>n</m> generated by <m>a</m> and define a map
            <m>\phi : {\mathbb Z}_n \rightarrow G</m> by <m>\phi : k \mapsto a^k</m>,
            where <m>0 \leq k \lt n</m>.
            One can check right from the definitions that <m>\phi</m> is an isomorphism. 
          </p>
        </proof>
      </theorem>
            <!-- RAB: 2014/08/18 Should ref be "corollary-isomorph-4"?   -->
            <!-- If so, search for refs (or see them fail with xsltproc) -->

      <p permid="iNy">
        The main goal in group theory is to classify all groups;
        however, it makes sense to consider two groups to be the same if they are isomorphic.
        We state this result in the following theorem. 
      </p>

      <theorem xml:id="isomorph-theorem-5" permid="TSI">
        <statement>
          <p permid="azf">
            The isomorphism of groups determines an equivalence relation on the class of all groups.
          </p>
        </statement>
      </theorem>

      <p permid="OUH">
        Hence, we can modify our goal of classifying all groups to classifying all groups
        <term>up to isomorphism</term>;
        that is, we will consider two groups to be the same if they are isomorphic.
      </p>

      <p>
	We finish the discussion of isomorphisms with an important class of groups which has a nice representative up to isomorphism.
	The Fundamental Theorem of Finite Abelian Groups tells us that every finite abelian group is isomorphic to a direct product of cyclic groups whose order is a prime power.
      </p>

      <theorem xml:id="struct-theorem-finite-abelian-groups" permid="lUM">
      <title>Fundamental Theorem of Finite Abelian Groups</title>
      <idx>
      <h>Fundamental Theorem</h>
      <h>of Finite Abelian Groups</h>
      </idx>
      <statement>
        <p permid="ddQ">
          Every finite abelian group <m>G</m> is isomorphic to a direct product of cyclic groups of the form
          <me permid="HKh">
            {\mathbb Z}_{p_1^{ \alpha_1 }} \times {\mathbb Z}_{p_2^{ \alpha_2 }} \times \cdots \times {\mathbb Z}_{p_n^{ \alpha_n }}
          </me>
          here the <m>p_i</m>'s are primes
          (not necessarily distinct).
        </p>
      </statement>
      </theorem>
      
      <example xml:id="struct-example-abelian-540" permid="voy">
      <p permid="mxC">
        Suppose that we wish to classify all abelian groups of order <m>540=2^2 \cdot 3^3 \cdot 5</m>.
        The Fundamental Theorem of Finite Abelian Groups tells us that we have the following six possibilities.

        <ul permid="KbX">
          <li permid="iEH">
            <p permid="eEI">
              <m>{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_5</m>;
            </p>
          </li>

          <li permid="OLQ">
            <p permid="KLR">
              <m>{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_3 \times {\mathbb Z}_9 \times {\mathbb Z}_5</m>;
            </p>
          </li>

          <li permid="uSZ">
            <p permid="qTa">
              <m>{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_{27} \times {\mathbb Z}_5</m>;
            </p>
          </li>

          <li permid="bai">
            <p permid="Xaj">
              <m>{\mathbb Z}_4 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_5</m>;
            </p>
          </li>

          <li permid="Hhr">
            <p permid="Dhs">
              <m>{\mathbb Z}_4 \times {\mathbb Z}_3 \times {\mathbb Z}_9 \times {\mathbb Z}_5</m>;
            </p>
          </li>

          <li permid="noA">
            <p permid="joB">
              <m>{\mathbb Z}_4 \times {\mathbb Z}_{27} \times {\mathbb Z}_5</m>.
            </p>
          </li>
        </ul>
      </p>
    </example>
      
  </section>
  
  <section xml:id="kernels-group-homomorphisms" permid="kgh">
    <title>Normal subgroups and kernels</title>
    <p permid="fmy">
      A subgroup <m>H</m> of a group <m>G</m> is <term>normal</term>
      <idx><h>Subgroup</h><h>normal</h></idx>
      <idx><h>Normal subgroup</h></idx>
      in G if
      <me>
	gHg^{-1} := \{ghg^{-1} \mid h \in H\}  = H \text{ for all } g \in G .
      </me>
    </p>
  
      <example xml:id="normal-example-abelian">
        <p>
          Let <m>G</m> be an abelian group.
          Every subgroup <m>H</m> of <m>G</m> is a normal subgroup.
          Since <m>ghg^{-1} = h</m> for all <m>g \in G</m> and <m>h \in H</m> by commutativity,
          it will always be the case that <m>gHg^{-1} = H</m>.
        </p>
      </example>


      <proposition xml:id="homomorph-proposition-preimage-subgroup" permid="preimage-subgroup">
	<statement>
          <p permid="EwP">
            Let <m>\phi : G_1 \rightarrow G_2</m> be a homomorphism of groups and <m>H_2</m> is a subgroup of <m>G_2</m>. 
            <ol>
	      <li>
                <m>\phi^{-1}(H_2) = \{ g \in G _1: \phi(g) \in H_2 \}</m> is a subgroup of <m>G_1</m>.
	      </li>
	      <li>
		If <m>H_2</m> is normal in <m>G_2</m>, then <m>\phi^{-1}(H_2)</m> is normal in <m>G_1</m>.
	      </li>
	    </ol>
	  </p>
	</statement>
	<proof>
          <p>
	    Let <m>H_2</m> be a subgroup of <m>G_2</m> and define <m>H_1</m> to be <m>\phi^{-1}(H_2)</m>;
            that is, <m>H_1</m> is the set of all
            <m>g \in G_1</m> such that <m>\phi(g) \in H_2</m>.
            The identity is in <m>H_1</m> since <m>\phi(e) = e'</m>.
            If <m>a</m> and <m>b</m> are in <m>H_1</m>,
            then <m>\phi(ab^{-1}) = \phi(a)[ \phi(b) ]^{-1}</m> is in <m>H_2</m> since <m>H_2</m> is a subgroup of <m>G_2</m>.
            Therefore, <m>ab^{-1} \in H_1</m> and <m>H_1</m> is a subgroup of <m>G_1</m>.
	  </p>
	  <p>
            If <m>H_2</m> is normal in <m>G_2</m>,
            we must show that <m>g^{-1} h g \in H_1</m> for
            <m>h \in H_1</m> and <m>g \in G_1</m>.
            But
            <me permid="PyK">
              \phi( g^{-1} h g) = [ \phi(g) ]^{-1} \phi( h ) \phi( g ) \in H_2
              </me>,
              since <m>H_2</m> is a normal subgroup of <m>G_2</m>.
              Therefore, <m>g^{-1}hg \in H_1</m>.
          </p>
	</proof>
      </proposition>

      <p>
	Note that the trivial subgroup consisting only of the identity element is normal.
	Together with <xref ref="homomorph-proposition-preimage-subgroup"/> this yields the following theorem,
	which says that with every homomorphism of groups we can naturally associate a normal subgroup.
      </p>

    <theorem permid="Aiv">
      <statement>
        <p permid="giA">
          Let <m>\phi : G \rightarrow H</m> be a group homomorphism.
          Then the kernel of <m>\phi</m> is a normal subgroup of <m>G</m>.
        </p>
      </statement>
    </theorem>

    <p>
      Let <m>G</m> be a group and <m>T</m> be an arbitrary subset.
      Then the <term>normal closure</term> of <m>T</m> is the smallest normal subgroup of <m>G</m> that contains <m>T</m>.
      Note that this is well-defined as there is always a normal subgroup containing <m>T</m>, at least the group <m>G</m> itself. 
    </p>
    <p>
      We list a few insights about the normal closure.
      The proof is omitted as this statement is not so central for the course but it gives background on the construction which we will exhibit in <xref ref="generated-groups-and-word-problem"/>. 
    </p>
    
    <proposition xml:id="proposition-properties-normal-closure">
      <statement>
	<ol>
	  <li>
	    <p>
	      The normal closure is the intersection of all normal subgroups of <m>G</m> containing <m>T</m>.
	    </p>
	  </li>
	  <li>
	    <p>
	      The normal closure is generated by <m>\{g^{-1}tg \mid g \in G, t \in T\}</m> that means that it equals
	      <me>
		\left\{g_1^{-1}t_1^{\sigma_1}g_1g_2^{-1}\dots t_n^{\sigma_n}g_n \mid n \geq 0, g_i \in G, t_i \in T, \sigma_i \in \{1,-1\} \forall i \in \{1,\dots,n\}\right\}. 
	      </me>
	    </p>
	  </li>
<!--	  <li>
	    <p>
	      If <m>T</m> is a subgroup, then the smallest normal subgroup of <m>G</m> containing <m>T</m> is <m>\bigcup_{g \in G} g^{-1}Tg</m>.  
	    </p>
	  </li> -->
	</ol>
      </statement>
    </proposition>
    
  </section>

  <section xml:id="free-and-generated-groups">
    <title>Free groups</title>
    <p>
      The <term>free group</term> on a given set <m>S</m> is formed by all words over the alphabet <m>S</m>, that is all expressions of the form
      <me>
	s_1^{\sigma_1} \dots s_n^{\sigma_n}
      </me>
      where <m>s_1,\dots,s_n \in S</m> and <m>\sigma_1,\dots,\sigma_n \in \{-1,1\}</m>.
      The binary operation of the group is concatenation of words.
      More precisely, the elements of the group are the equivalence classes of words under the identification of subwords <m>x x^{-1}</m> and <m>x^{-1} x</m> for <m>x \in S</m> with the empty word <m>\epsilon</m>.
      We will denote the free group by <m>\mathcal{F}(S)</m>. 
      The neutral element of this group is the empty word <m>\epsilon</m>.
      For example, for <m>S = \{a,b\}</m>, the words <m>aa^{-1}</m> or <m>b^{-1}b</m> are in the same equivalence class as <m>\epsilon</m> and the words <m>ab^{-1}aa^{-1}b</m> and <m>aa^{-1}a^{-1}aa</m> are in the same equivalence class as <m>a</m> (among many others). 
      The proof of the following statement implies that the free group is actually a group. 
    </p>

    <p>
      Recall from <xref ref="groups-subsection-subgroup-examples"/> what it means for a group to be generated.
      With this, the free group on <m>S</m> is generated by <m>S</m>.
      The number of generators of a free group is the <term>rank</term> of the free group. 
    </p>
    
    <proposition permid="eqn">
      <statement>
        <p permid="Vzr">
          Let <m>H</m> be the subgroup of a group <m>G</m> that is generated by <m>\{ g_i \in G : i \in I \}</m>.
          Then <m>h \in H</m> exactly when it is a product of the form
          <me permid="vvP">
            h = g_{i_1}^{\alpha_1} \cdots g_{i_n}^{\alpha_n}
          </me>,
          where the <m>g_{i_k}</m>s are not necessarily distinct.
        </p>
      </statement>

      <proof permid="QWC">
        <p permid="Pal">
          Let <m>K</m> be the set of all products of the form <m>g_{i_1}^{\alpha_1} \cdots g_{i_n}^{\alpha_n}</m>,
          where the <m>g_{i_k}</m>s are not necessarily distinct.
          Certainly <m>K</m> is a subset of <m>H</m>.
          We need only show that <m>K</m> is a subgroup of <m>G</m>.
          If this is the case, then <m>K=H</m>,
          since <m>H</m> is the smallest subgroup containing all the <m>g_i</m>s.
        </p>

        <p permid="vhu">
          Clearly, the set <m>K</m> is closed under the group operation.
          Since <m>g_i^0 = 1</m>, the identity is in <m>K</m>.
          It remains to show that the inverse of an element 
          <m>g =g_{i_1}^{k_1} \cdots g_{i_n}^{k_n}</m> in <m>K</m> must also be in <m>K</m>.
          However,
          <me permid="bCY">
            g^{-1} = (g_{i_1}^{k_{1}} \cdots g_{i_n}^{k_n})^{-1} = (g_{i_n}^{-k_n} \cdots g_{i_{1}}^{-k_{1}})
          </me>.
        </p>
      </proof>
    </proposition>

    <example>
      <p>
	The free group on one element <m>a</m> denoted by <m>\mathcal{F}(\{a\})</m> is isomorphic with <m>\mathbb{Z}</m>. 
      </p>
    </example>
    
  <p>
      Let <m>G</m> be a group and <m>\{g_s \colon s \in S\} \subseteq G</m> be a subset generating it, e.g., the set of all elements of <m>G</m>.
      Then there is a <term>canonical homomorphism</term> such that
      <men xml:id="homomorphism-finitely-generated">
	s \mapsto g_s
      </men>
      for all <m>s \in S</m>.
      Taking a suitable subset of the elements in the kernel yields a so-called <term>presentation</term> of <m>G</m>.
      We will discuss this further in <xref ref="generated-groups-and-word-problem"/>. 

  </p>
  </section>

  
<!--    <section xml:id="additional-homomorphisms">
      <title> Additional insights </title>

<p>
universal property of free group?!?
</p>

<p>
fundamental group, algebraic topology
</p>
    </section>
-->

  <exercises xml:id="exercises-homomorphism-core" filenamebase="homomorphism">
    <title>Core Exercises</title>

     <exercise xml:id="exercise-properties-homomorphism-group">
	<statement>
	  <p>
	    Prove <xref ref="proposition-properties-homomorphism-group"/>. 
	  </p>
	</statement>
	<solution>
	  <p permid="etn">
          (1) Suppose that <m>e</m> and <m>e'</m> are the identities of <m>G_1</m> and <m>G_2</m>,
          respectively; then
          <me permid="Xdj">
            e' \phi(e) = \phi(e) = \phi(e e) = \phi(e) \phi(e)
          </me>.
          By cancellation, <m>\phi(e) = e'</m>.
        </p>

        <p permid="KAw">
          (2) This statement follows from the fact that
          <me permid="Dks">
            \phi( g^{-1}) \phi(g) = \phi(g^{-1} g) = \phi(e) = e'
          </me>.
        </p>
	<p>
	  (3) This follows by induction from the homomorphism property <m>\phi(g^n)=\phi(g^{n-1}g) = \phi(g^{n-1})\phi(g)=\phi(g)^{n-1}\phi(g)</m>. 
	</p>
        <!--  Corrected notation error.  Suggested by P. Diethelm.  TWJ 16/8/2013. -->
        <p permid="qHF">
          (4) The set <m>\phi(H_1)</m> is nonempty since the identity of <m>G_2</m> is in <m>\phi(H_1)</m>.
          Suppose that <m>H_1</m> is a subgroup of <m>G_1</m> and let <m>x</m> and <m>y</m> be in <m>\phi(H_1)</m>.
          There exist elements <m>a,
          b \in H_1</m> such that <m>\phi(a) = x</m> and <m>\phi(b)=y</m>.
          Since
          <me permid="jrB">
            xy^{-1} = \phi(a)[ \phi(b)]^{-1} = \phi(a b^{-1} ) \in \phi(H_1)
          </me>,
          <m>\phi(H_1)</m> is a subgroup of <m>G_2</m> by <xref ref="groups-proposition-subgroup"/>.
        </p>
	</solution>
      </exercise>

    <exercise xml:id="exercise-permutation-matrices">
	<statement>
	  <p>
	    Consider the map <m>\psi \colon S_3 \to GL_3({\mathbb R})</m> given by
	    <m>\pi \mapsto M</m>
	    where
	    <me>
	      M_{ij} =
	      \begin{cases}
	      1 &amp; \text{ for } i = \pi(j), \\
	      0 &amp; \text{ otherwise} .
	      \end{cases}
	    </me>
	    For example, one obtains
	    <me>
	      \psi\left( (2\,1\,3) \right) =
	      \begin{pmatrix}
	      0 &amp; 1 &amp; 0 \\
	      0 &amp; 0 &amp; 1 \\
	      1 &amp; 0 &amp; 0
	      \end{pmatrix} \enspace .
	    </me>
	    <ol>
	      <li>Determine explicitly the image of <m>\psi</m>. </li>
	      <li>Show that <m>\psi</m> is a group homomorphism. </li>
	      <li>What is the kernel of <m>\psi</m>? Is it an isomorphism? </li>
	      <li>Give a generalization of the statement for <m>S_n</m> for arbirary natural numbers <m>n</m>. </li>
	      <li>What does the determinant of the image of a permutation say about the permutation?</li>
	    </ol>
	  </p>
	</statement>
	<solution>
	  <p>
	    (1) The image has six elements.
	    Additional to the example above, one gets
	    <me>
	      \psi\left( (1) \right) =
	      \begin{pmatrix}
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 1 &amp; 0 \\
	      0 &amp; 0 &amp; 1
	      \end{pmatrix}
	    </me>
	    and 
	    <me>
	      \psi\left( (12) \right) =
	      \begin{pmatrix}
	      0 &amp; 1 &amp; 0 \\
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 0 &amp; 1
	      \end{pmatrix} \enspace .
	    </me>
	    The remaining three matrices are obtained analogously. 
	  </p>
	  <p> 
	    (2) There are essentially two ways to approach this.
	    Either one can check the homomorphism property for all pairs explicitly or one shows it more abstractly.
	    The first approach goes through all pairs of elements in <m>S_3</m> like
	    <me>
	      \begin{pmatrix}
	      0 &amp; 1 &amp; 0 \\
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 0 &amp; 1
	      \end{pmatrix} \cdot
	      \begin{pmatrix}
	      0 &amp; 0 &amp; 1 \\
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 1 &amp; 0
	      \end{pmatrix} =
	      \psi\left( (12) (123) \right) \stackrel{\text{?}}{=} 
	      \psi\left( (1)(23) \right) =
	      \begin{pmatrix}
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 0 &amp; 1 \\
	      0 &amp; 1 &amp; 0
	      \end{pmatrix}
	    </me>
	    and indeed
	    <me>
	      \begin{pmatrix}
	      0 &amp; 1 &amp; 0 \\
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 0 &amp; 1
	      \end{pmatrix} \cdot
	      \begin{pmatrix}
	      0 &amp; 0 &amp; 1 \\
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 1 &amp; 0
	      \end{pmatrix} =
	      \begin{pmatrix}
	      1 &amp; 0 &amp; 0 \\
	      0 &amp; 0 &amp; 1 \\
	      0 &amp; 1 &amp; 0
	      \end{pmatrix}\enspace .
	    </me>
	    Note that one has to check actually <m>6 \cdot 6 = 36</m> pairs then. 
	    For the second approach, let <m>\alpha, \beta \in S_3</m> and <m>j \in \{1,2,3\}</m>.
	    Then the <m>(i,j)</m>-entry of the matrix <m>\psi(\alpha)\cdot \psi(\beta)</m> is
	    <me>
	      \sum_{k=1}^{3} \psi(\alpha)_{ik} \cdot \psi(\beta)_{kj} \enspace .
	    </me>
	    Properly checking this expression with the definition of <m>\psi</m> yields the claim. 
	  </p>
	  <p>
	    (3) The kernel is <m>\{id\}</m>, it is an isomorphism.
	  </p>
	  <p>
	    (4) Indeed, there is such an isomorphism from <m>S_n</m> to the group of <term>permutation matrices</term> for all positive integers <m>n</m>. 
	  </p>
	  <p>
	    Even or odd. 
	  </p>
	  </solution>
    </exercise>

    <exercise permid="Trs"  xml:id="homomorph-exercise-which-are-homomorph">
      <statement>
        <p permid="SOP">
          Which of the following maps are homomorphisms?
          If the map is a homomorphism, what is the kernel?

          <ol permid="zMW">
            <li permid="kDY">
              <p permid="PFO">
                <m>\phi : {\mathbb R}^\ast \rightarrow GL_2 ( {\mathbb R})</m> defined by
                <me permid="CeZ">
                  \phi( a ) =
                  \begin{pmatrix}
                  1 &amp; 0 \\
                  0 &amp; a
                  \end{pmatrix}
                </me>
              </p>
            </li>

            <li permid="QLh">
              <p permid="vMX">
                <m>\phi : {\mathbb R} \rightarrow GL_2 ( {\mathbb R})</m> defined by
                <me permid="imi">
                  \phi( a ) =
                  \begin{pmatrix}
                  1 &amp; 0 \\
                  a &amp; 1
                  \end{pmatrix}
                </me>
              </p>
            </li>