Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0"?>
<chapter xmlns:xi="http://www.w3.org/2001/XInclude" xml:id="homomorphisms" permid="JXG">
<title>Homomorphisms</title>
<introduction permid="aAs">
<p>
Basic learning goals
<ol>
<li>
Recognizing and checking group homomorphisms.
</li>
<li>
Basic properties of group homomorphisms.
</li>
<li>
Recognizing, checking and basic properties of group isomorphisms.
</li>
<li>
Characterization of cyclic and abelian groups (Fundamental Theorem of Finite Abelian Groups).
</li>
<li>
Normal subgroups, their interplay with homomorphisms.
</li>
<li>
Free groups and generated groups.
</li>
</ol>
</p>
<p permid="ato">
One of the most fundamental ideas of algebra is the concept of a homomorphism.
In the study of groups, we already identified structures of certain operations on sets.
Now, the next crucial insights come from the study of structure-preserving maps.
This generalizes the idea of linear maps between vector spaces as considered in linear algebra.
Recall that linear maps take the sum of two vectors to the sum of their images.
This idea is relaxed to maps taking composition in one group to the composition in another group.
</p>
</introduction>
<section xml:id="homomorph-section-group-homomorphisms" permid="uOI">
<title>Group Homomorphisms</title>
<p permid="pgN">
A <term>homomorphism</term><idx><h>Group</h><h>homomorphism of</h></idx><idx><h>Homomorphism</h><h>of groups</h></idx> between groups <m>(G, \cdot)</m> and
<m>(H, \circ)</m> is a map <m>\phi :G \rightarrow H</m> such that
<me permid="Stq">
\phi( g_1 \cdot g_2 ) = \phi( g_1 ) \circ \phi( g_2 )
</me>
for <m>g_1, g_2 \in G</m>.
The range of <m>\phi</m> in <m>H</m> is called the
<term>homomorphic image</term>
<idx><h>Homomorphic image</h></idx>
of <m>\phi</m>.
</p>
<example>
<p>
First note that a vector space is an abelian group.
For the special vector space <m>\mathbb{R}^k</m>, one can directly see this from <xref ref="exercise-external-direct-products"/> and the basic insight that <m>(\mathbb{R},+)</m> is an abelian group.
</p>
<p>
Now, recall the map from <xref ref="matrix-example-linear-transform"/> given by
<m>T \colon {\mathbb R}^2 \rightarrow {\mathbb R}^2</m> with
<me permid="RNa">
T(x_1, x_2) = (2 x_1 + 5 x_2, - 4 x_1 + 3 x_2) \enspace .
</me>
It maps the abelian group <m>(\mathbb{R}^2,+)</m> to itself while preserving the additive structure, that is
<me>
T(x_1 + y_1, x_2 + y_2) = T(x_1, x_2) + T(y_1, y_2) \enspace .
</me>
</p>
<p>
More generally, recall from the introduction of <xref ref="intro-and-applications"/> that a linear map <m>T : {\mathbb R}^n \rightarrow {\mathbb R}^m</m> fulfills <m>T({\mathbf x}+{\mathbf y}) = T({\mathbf x}) + T({\mathbf y})</m>.
Hence, a linear map is a homomorphism between the additive structure of two vector spaces.
Note that we did not require compatibility with scalar multiplication as we only care about the additive structure of a vector space here.
</p>
</example>
<p>
More generally, we use homomorphisms to study relationships between groups.
</p>
<example>
<p>
The symmetric group <m>S_n</m> and the group
<m>{\mathbb Z}_2</m> are related by the fact that <m>S_n</m> can be divided into even and odd permutations that exhibit a group structure like that <m>{\mathbb Z}_2</m>,
as shown in the following multiplication table.
</p>
<p permid="umf">
<me permid="yAz">
\begin{array}{c|cc}
& \text{even} & \text{odd} \\ \hline
\text{even} & \text{even} & \text{odd} \\
\text{odd} & \text{odd} & \text{even}
\end{array}
</me>
</p>
</example>
<example xml:id="homomorph-example-zn" permid="kZx">
<p permid="QZC">
Let <m>G</m> be a group and <m>g \in G</m>.
Define a map <m>\phi : {\mathbb Z} \rightarrow G</m> by <m>\phi( n ) = g^n</m>.
Then <m>\phi</m> is a group homomorphism, since
<me permid="eHI">
\phi( m + n ) = g^{ m + n} = g^m g^n = \phi( m ) \phi( n )
</me>.
This homomorphism maps <m>{\mathbb Z}</m> onto the cyclic subgroup of <m>G</m> generated by <m>g</m>.
</p>
</example>
<example xml:id="homomorph-example-gl2" permid="RgG">
<p permid="xgL">
Let <m>G = GL_2( {\mathbb R })</m>.
If
<me permid="KOR">
A =
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
</me>
is in <m>G</m>, then the determinant is nonzero;
that is, <m>\det(A) = ad - bc \neq 0</m>.
Also, for any two elements <m>A</m> and <m>B</m> in <m>G</m>,
<m>\det(AB) = \det(A) \det(B)</m>.
Using the determinant, we can define a homomorphism
<m>\phi : GL_2( {\mathbb R }) \rightarrow {\mathbb R}^\ast</m> by <m>A \mapsto \det(A)</m>.
</p>
</example>
<example xml:id="homomorph-example-circle-group" permid="xnP">
<p permid="dnU">
Recall that the circle group
<m>{ \mathbb T}</m> consists of all complex numbers <m>z</m> such that <m>|z|=1</m>.
We can define a homomorphism <m>\phi</m> from the additive group of real numbers <m>{\mathbb R}</m> to
<m>{\mathbb T}</m> by <m>\phi : \theta \mapsto \cos \theta + i \sin \theta</m>.
Indeed,
<md permid="qWa">
<mrow>\phi( \alpha + \beta ) & = \cos( \alpha + \beta ) + i \sin( \alpha + \beta )</mrow>
<mrow>& = (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i( \sin \alpha \cos \beta + \cos \alpha \sin \beta )</mrow>
<mrow>& = (\cos \alpha + i \sin \alpha )(\cos \beta + i \sin \beta)</mrow>
<mrow>& = \phi( \alpha ) \phi( \beta )</mrow>
</md>.
Geometrically,
we are simply wrapping the real line around the circle in a group-theoretic fashion.
</p>
</example>
<p>
The following proposition lists some basic properties of group homomorphisms.
</p>
<proposition xml:id="proposition-properties-homomorphism-group">
<statement>
<p permid="kSt">
Let <m>\phi : G_1 \rightarrow G_2</m> be a homomorphism of groups.
<ol permid="TFN">
<li permid="Mbo">
<p permid="rde">
If <m>e</m> is the identity of <m>G_1</m>,
then <m>\phi( e)</m> is the identity of <m>G_2</m>.
</p>
</li>
<li permid="six">
<p permid="Xkn">
For any element <m>g \in G_1</m>,
<m>\phi( g^{-1}) = [\phi( g )]^{- 1}</m>.
</p>
</li>
<li>
<p>
For any element <m>g \in G_1</m> and <m>n \in \mathbb{Z}</m>,
<m>\phi( g^{n}) = [\phi( g )]^{n}</m>.
</p>
</li>
<li permid="YpG">
<p permid="Drw">
If <m>H_1</m> is a subgroup of <m>G_1</m>,
then <m>\phi( H_1 )</m> is a subgroup of <m>G_2</m>.
</p>
</li>
</ol>
</p>
</statement>
</proposition>
<p permid="NJx">
Let <m>\phi : G \rightarrow H</m> be a group homomorphism and suppose that <m>e</m> is the identity of <m>H</m>.
By <xref ref="proposition-properties-homomorphism-group"/>,
<m>\phi^{-1} ( \{ e \} )</m> is a subgroup of <m>G</m>.
This subgroup is called the <term>kernel</term><idx><h>Kernel</h><h>of a group homomorphism</h></idx><idx><h>Homomorphism</h><h>kernel of a group</h></idx> of <m>\phi</m> and will be denoted by <m>\ker \phi</m>.
<notation>
<usage><m>\ker \phi</m></usage>
<description>kernel of <m>\phi</m></description>
</notation>
</p>
<example xml:id="homomorph-example-g2-to-r" permid="duY">
<p permid="Jvd">
Let us examine the homomorphism
<m>\phi : GL_2( {\mathbb R }) \rightarrow {\mathbb R}^\ast</m> defined by <m>A \mapsto \det( A )</m>.
Since <m>1</m> is the identity of <m>{\mathbb R}^\ast</m>,
the kernel of this homomorphism is all
<m>2 \times 2</m> matrices having determinant one.
That is, <m>\ker \phi = SL_2( {\mathbb R })</m>.
</p>
</example>
<example xml:id="homomorph-example-kernel" permid="JCh">
<p permid="pCm">
The kernel of the group homomorphism <m>\phi : {\mathbb R} \rightarrow {\mathbb C}^\ast</m> defined by
<m>\phi( \theta ) = \cos \theta + i \sin \theta</m> is <m>\{ 2 \pi n : n \in {\mathbb Z} \}</m>.
Notice that <m>\ker \phi \cong {\mathbb Z}</m>.
</p>
</example>
<example xml:id="homomorph-example-z7" permid="pJq">
<p permid="VJv">
Suppose that we wish to determine all possible homomorphisms <m>\phi</m> from
<m>{\mathbb Z}_7</m> to <m>{\mathbb Z}_{12}</m>.
Since the kernel of <m>\phi</m> must be a subgroup of <m>{\mathbb Z}_7</m>,
there are only two possible kernels,
<m>\{ 0 \}</m> and all of <m>{\mathbb Z}_7</m>.
The image of a subgroup of
<m>{\mathbb Z}_7</m> must be a subgroup of <m>{\mathbb Z}_{12}</m>.
Hence, there is no injective homomorphism;
otherwise, <m>{\mathbb Z}_{12}</m> would have a subgroup of order <m>7</m>,
which is impossible.
Consequently,
the only possible homomorphism from <m>{\mathbb Z}_7</m> to
<m>{\mathbb Z}_{12}</m> is the one mapping all elements to zero.
</p>
</example>
<example xml:id="homomorph-example-gn" permid="VQz">
<p permid="BQE">
Let <m>G</m> be a group.
Suppose that <m>g \in G</m> and <m>\phi</m> is the homomorphism from
<m>{\mathbb Z}</m> to <m>G</m> given by <m>\phi( n ) = g^n</m>.
If the order of <m>g</m> is infinite,
then the kernel of this homomorphism is <m>\{ 0 \}</m> since <m>\phi</m> maps
<m>{\mathbb Z}</m> onto the cyclic subgroup of <m>G</m> generated by <m>g</m>.
However, if the order of <m>g</m> is finite,
say <m>n</m>,
then the kernel of <m>\phi</m> is <m>n {\mathbb Z}</m>.
</p>
</example>
</section>
<section xml:id="isomorph-section-definitions" permid="Evp">
<title>Isomorphisms</title>
<introduction>
<p>
Many groups may appear to be different at first glance,
but can be shown to be the same by a simple renaming of the group elements.
For example,
<m>{\mathbb Z}_4</m> and the subgroup of the circle group
<m>{\mathbb T}</m> generated by <m>i</m> can be shown to be the same by demonstrating a one-to-one correspondence between the elements of the two groups and between the group operations.
In such a case we say that the groups are isomorphic.
This is exactly the case when there is a bijective homomorphism between the groups, i.e., whose kernel is trivial.
</p>
</introduction>
<introduction>
<p>
Two groups <m>(G, \cdot)</m> and
<m>(H, \circ)</m> are <term>isomorphic</term>
<idx><h>Group</h><h>isomorphic</h></idx>
if there exists a group homomorphism
<m>\phi : G \rightarrow H</m>
that is a one-to-one and onto map.
If <m>G</m> is isomorphic to <m>H</m>,
we write <m>G \cong H</m>.
<notation>
<usage><m>G \cong H</m></usage>
<description><m>G</m> is isomorphic to a group <m>H</m></description>
</notation>
The map <m>\phi</m> is called an <term>isomorphism</term>.
<idx><h>Group</h><h>isomorphism of</h></idx>
<idx><h>Isomorphism</h><h>of groups</h></idx>
</p>
</introduction>
<example xml:id="isomorph-example-z4" permid="gha">
<p permid="Qaa">
To show that <m>{\mathbb Z}_4 \cong \langle i \rangle</m>,
define a map <m>\phi: {\mathbb Z}_4 \rightarrow \langle i \rangle</m> by <m>\phi(n) = i^n</m>.
We must show that <m>\phi</m> is bijective and preserves the group operation.
The map <m>\phi</m> is one-to-one and onto because
<md permid="EJX">
<mrow>\phi(0) & = 1</mrow>
<mrow>\phi(1) & = i</mrow>
<mrow>\phi(2) & = -1</mrow>
<mrow>\phi(3) & = -i</mrow>
</md>.
Since
<me permid="YCO">
\phi(m + n) = i^{m+n} = i^m i^n = \phi(m) \phi( n)
</me>,
the group operation is preserved.
</p>
</example>
<example xml:id="isomorph-example-real" permid="Moj">
<p permid="whj">
We can define an isomorphism <m>\phi</m> from the additive group of real numbers
<m>( {\mathbb R}, + )</m> to the multiplicative group of positive real numbers
<m>( {\mathbb R^+}, \cdot )</m> with the exponential map; that is,
<me permid="kRg">
\phi( x + y) = e^{x + y} = e^x e^y = \phi( x ) \phi( y)
</me>.
Of course, we must still show that <m>\phi</m> is one-to-one and onto,
but this can be determined using calculus.
</p>
</example>
<example xml:id="isomorph-example-rational" permid="svs">
<p permid="cos">
The integers are isomorphic to the subgroup of
<m>{\mathbb Q}^\ast</m> consisting of elements of the form <m>2^n</m>.
Define a map <m>\phi: {\mathbb Z} \rightarrow {\mathbb Q}^\ast</m> by <m>\phi( n ) = 2^n</m>.
Then
<me permid="QYp">
\phi( m + n ) = 2^{m + n} = 2^m 2^n = \phi( m ) \phi( n )
</me>.
By definition the map <m>\phi</m> is onto the subset
<m>\{2^n :n \in {\mathbb Z} \}</m> of <m>{\mathbb Q}^\ast</m>.
To show that the map is injective,
assume that <m>m \neq n</m>.
If we can show that <m>\phi(m) \neq \phi(n)</m>, then we are done.
Suppose that <m>m \gt n</m> and assume that <m>\phi(m) = \phi(n)</m>.
Then <m>2^m = 2^n</m> or <m>2^{m - n} = 1</m>,
which is impossible since <m>m - n \gt 0</m>.
</p>
</example>
<example xml:id="isomorph-example-units" permid="YCB">
<p permid="IvB">
The groups <m>{\mathbb Z}_8</m> and
<m>{\mathbb Z}_{12}</m> cannot be isomorphic since they have different orders;
however, it is true that <m>U(8) \cong U(12)</m>.
We know that
<md permid="xfy">
<mrow>U(8) & = \{1, 3, 5, 7 \}</mrow>
<mrow>U(12) & = \{1, 5, 7, 11 \}</mrow>
</md>.
An isomorphism <m>\phi : U(8) \rightarrow U(12)</m> is then given by
<md permid="dmH">
<mrow>1 & \mapsto 1</mrow>
<mrow>3 & \mapsto 5</mrow>
<mrow>5 & \mapsto 7</mrow>
<mrow>7 & \mapsto 11</mrow>
</md>.
The map <m>\phi</m> is not the only possible isomorphism between these two groups.
We could define another isomorphism <m>\psi</m> by <m>\psi(1) = 1</m>,
<m>\psi(3) = 11</m>, <m>\psi(5) = 5</m>, <m>\psi(7) = 7</m>.
In fact, both of these groups are isomorphic to <m>{\mathbb Z}_2 \times {\mathbb Z}_2</m>
(see <xref ref="groups-example-z2xz2"/> in <xref ref="groups"/>).
</p>
</example>
<example xml:id="isomorph-example-not-isomorph" permid="EJK">
<p permid="oCK">
Even though <m>S_3</m> and
<m>{\mathbb Z}_6</m> possess the same number of elements,
we would suspect that they are not isomorphic,
because <m>{\mathbb Z}_6</m> is abelian and <m>S_3</m> is nonabelian.
To demonstrate that this is indeed the case,
suppose that <m>\phi : {\mathbb Z}_6 \rightarrow S_3</m> is an isomorphism.
Let <m>a , b \in S_3</m> be two elements such that <m>ab \neq ba</m>.
Since <m>\phi</m> is an isomorphism,
there exist elements <m>m</m> and <m>n</m> in <m>{\mathbb Z}_6</m> such that
<me permid="JtQ">
\phi( m ) = a \quad \text{and} \quad \phi( n ) = b
</me>.
However,
<me permid="pAZ">
ab = \phi(m ) \phi(n) = \phi(m + n) = \phi(n + m) = \phi(n ) \phi(m) = ba
</me>,
which contradicts the fact that <m>a</m> and <m>b</m> do not commute.
</p>
</example>
<theorem xml:id="isomorph-theorem-1" permid="bxh">
<statement>
<p permid="idE">
Let <m>\phi : G \rightarrow H</m> be an isomorphism of two groups.
Then the following statements are true.
<ol permid="gvv">
<li permid="Cdz">
<p permid="UQX">
<m>\phi^{-1} : H \rightarrow G</m> is an isomorphism.
</p>
</li>
<li permid="ikI">
<p permid="AYg">
<m>|G| = |H|</m>.
</p>
</li>
<li permid="OrR">
<p permid="hfp">
If <m>G</m> is abelian, then <m>H</m> is abelian.
</p>
</li>
<li permid="uza">
<p permid="Nmy">
If <m>G</m> is cyclic, then <m>H</m> is cyclic.
</p>
</li>
<li permid="aGj">
<p permid="ttH">
If <m>G</m> has a subgroup of order <m>n</m>,
then <m>H</m> has a subgroup of order <m>n</m>.
</p>
</li>
</ol>
</p>
</statement>
<proof>
<p>
Assertions (1) and (2) follow from the fact that <m>\phi</m> is a bijection.
</p>
<p permid="TZZ">
(3) Suppose that <m>h_1</m> and <m>h_2</m> are elements of <m>H</m>.
Since <m>\phi</m> is onto,
there exist elements <m>g_1, g_2 \in G</m> such that
<m>\phi(g_1) = h_1</m> and <m>\phi(g_2) = h_2</m>.
Therefore,
<me permid="VIi">
h_1 h_2 = \phi(g_1) \phi(g_2) = \phi(g_1 g_2) = \phi(g_2 g_1) = \phi(g_2) \phi(g_1) = h_2 h_1
</me>.
</p>
<p>
(4)
Let <m>g</m> be a generator of <m>G</m>.
Then
<me>
\phi\left(G\right) = \phi\left(\{g^k \mid k \in \mathbb{Z}\}\right) = \{\phi(g^k) \mid k \in \mathbb{Z}\} \enspace .
</me>
Since <m>\phi(G) = H</m>, we get from <xref ref="proposition-properties-homomorphism-group"/> that
<me>
H = \{\phi(g^k) \mid k \in \mathbb{Z}\} = \{\phi(g)^k \mid k \in \mathbb{Z}\} \enspace .
</me>
Therefore, also <m>H</m> is cyclic and the generators of <m>G</m> and <m>H</m> are in bijection.
</p>
<p>
(5)
Let <m>G_1</m> be a subgroup of <m>G</m> of order <m>n</m>.
Then <m>\phi(G_1)</m> is a subgroup of <m>H</m> by <xref ref="proposition-properties-homomorphism-group"/>.
Since <m>\phi</m> is a bijection, this subgroup has cardinality <m>|\phi(G_1)| = |G_1| = n</m>.
</p>
</proof>
</theorem>
<p permid="CGp">
We are now in a position to characterize all cyclic groups.
</p>
<theorem xml:id="isomorph-theorem-2" permid="HEq">
<statement>
<p permid="OkN">
All cyclic groups of infinite order are isomorphic to <m>{\mathbb Z}</m>.
</p>
</statement>
<proof permid="pAM">
<p permid="Ahi">
Let <m>G</m> be a cyclic group with infinite order and suppose that <m>a</m> is a generator of <m>G</m>.
Define a map <m>\phi : {\mathbb Z} \rightarrow G</m> by <m>\phi : n \mapsto a^n</m>.
Then
<me permid="BPr">
\phi( m+n ) = a^{m+n} = a^m a^n = \phi( m ) \phi( n )
</me>.
To show that <m>\phi</m> is injective,
suppose that <m>m</m> and <m>n</m> are two elements in
<m>{\mathbb Z}</m>, where <m>m \neq n</m>.
We can assume that <m>m \gt n</m>.
We must show that <m>a^m \neq a^n</m>.
Let us suppose the contrary;
that is, <m>a^m = a^n</m>.
In this case <m>a^{m - n} = e</m>, where <m>m - n \gt 0</m>,
which contradicts the fact that <m>a</m> has infinite order.
Our map is onto since any element in <m>G</m> can be written as <m>a^n</m> for some integer <m>n</m> and <m>\phi(n) = a^n</m>.
</p>
</proof>
</theorem>
<theorem xml:id="isomorph-theorem-3" permid="nLz">
<statement>
<p permid="urW">
If <m>G</m> is a cyclic group of order <m>n</m>,
then <m>G</m> is isomorphic to <m>{\mathbb Z}_n</m>.
</p>
</statement>
<proof permid="VHV">
<p permid="gor">
Let <m>G</m> be a cyclic group of order <m>n</m> generated by <m>a</m> and define a map
<m>\phi : {\mathbb Z}_n \rightarrow G</m> by <m>\phi : k \mapsto a^k</m>,
where <m>0 \leq k \lt n</m>.
One can check right from the definitions that <m>\phi</m> is an isomorphism.
</p>
</proof>
</theorem>
<!-- RAB: 2014/08/18 Should ref be "corollary-isomorph-4"? -->
<!-- If so, search for refs (or see them fail with xsltproc) -->
<p permid="iNy">
The main goal in group theory is to classify all groups;
however, it makes sense to consider two groups to be the same if they are isomorphic.
We state this result in the following theorem.
</p>
<theorem xml:id="isomorph-theorem-5" permid="TSI">
<statement>
<p permid="azf">
The isomorphism of groups determines an equivalence relation on the class of all groups.
</p>
</statement>
</theorem>
<p permid="OUH">
Hence, we can modify our goal of classifying all groups to classifying all groups
<term>up to isomorphism</term>;
that is, we will consider two groups to be the same if they are isomorphic.
</p>
<p>
We finish the discussion of isomorphisms with an important class of groups which has a nice representative up to isomorphism.
The Fundamental Theorem of Finite Abelian Groups tells us that every finite abelian group is isomorphic to a direct product of cyclic groups whose order is a prime power.
</p>
<theorem xml:id="struct-theorem-finite-abelian-groups" permid="lUM">
<title>Fundamental Theorem of Finite Abelian Groups</title>
<idx>
<h>Fundamental Theorem</h>
<h>of Finite Abelian Groups</h>
</idx>
<statement>
<p permid="ddQ">
Every finite abelian group <m>G</m> is isomorphic to a direct product of cyclic groups of the form
<me permid="HKh">
{\mathbb Z}_{p_1^{ \alpha_1 }} \times {\mathbb Z}_{p_2^{ \alpha_2 }} \times \cdots \times {\mathbb Z}_{p_n^{ \alpha_n }}
</me>
here the <m>p_i</m>'s are primes
(not necessarily distinct).
</p>
</statement>
</theorem>
<example xml:id="struct-example-abelian-540" permid="voy">
<p permid="mxC">
Suppose that we wish to classify all abelian groups of order <m>540=2^2 \cdot 3^3 \cdot 5</m>.
The Fundamental Theorem of Finite Abelian Groups tells us that we have the following six possibilities.
<ul permid="KbX">
<li permid="iEH">
<p permid="eEI">
<m>{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_5</m>;
</p>
</li>
<li permid="OLQ">
<p permid="KLR">
<m>{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_3 \times {\mathbb Z}_9 \times {\mathbb Z}_5</m>;
</p>
</li>
<li permid="uSZ">
<p permid="qTa">
<m>{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_{27} \times {\mathbb Z}_5</m>;
</p>
</li>
<li permid="bai">
<p permid="Xaj">
<m>{\mathbb Z}_4 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_3 \times {\mathbb Z}_5</m>;
</p>
</li>
<li permid="Hhr">
<p permid="Dhs">
<m>{\mathbb Z}_4 \times {\mathbb Z}_3 \times {\mathbb Z}_9 \times {\mathbb Z}_5</m>;
</p>
</li>
<li permid="noA">
<p permid="joB">
<m>{\mathbb Z}_4 \times {\mathbb Z}_{27} \times {\mathbb Z}_5</m>.
</p>
</li>
</ul>
</p>
</example>
</section>
<section xml:id="kernels-group-homomorphisms" permid="kgh">
<title>Normal subgroups and kernels</title>
<p permid="fmy">
A subgroup <m>H</m> of a group <m>G</m> is <term>normal</term>
<idx><h>Subgroup</h><h>normal</h></idx>
<idx><h>Normal subgroup</h></idx>
in G if
<me>
gHg^{-1} := \{ghg^{-1} \mid h \in H\} = H \text{ for all } g \in G .
</me>
</p>
<example xml:id="normal-example-abelian">
<p>
Let <m>G</m> be an abelian group.
Every subgroup <m>H</m> of <m>G</m> is a normal subgroup.
Since <m>ghg^{-1} = h</m> for all <m>g \in G</m> and <m>h \in H</m> by commutativity,
it will always be the case that <m>gHg^{-1} = H</m>.
</p>
</example>
<proposition xml:id="homomorph-proposition-preimage-subgroup" permid="preimage-subgroup">
<statement>
<p permid="EwP">
Let <m>\phi : G_1 \rightarrow G_2</m> be a homomorphism of groups and <m>H_2</m> is a subgroup of <m>G_2</m>.
<ol>
<li>
<m>\phi^{-1}(H_2) = \{ g \in G _1: \phi(g) \in H_2 \}</m> is a subgroup of <m>G_1</m>.
</li>
<li>
If <m>H_2</m> is normal in <m>G_2</m>, then <m>\phi^{-1}(H_2)</m> is normal in <m>G_1</m>.
</li>
</ol>
</p>
</statement>
<proof>
<p>
Let <m>H_2</m> be a subgroup of <m>G_2</m> and define <m>H_1</m> to be <m>\phi^{-1}(H_2)</m>;
that is, <m>H_1</m> is the set of all
<m>g \in G_1</m> such that <m>\phi(g) \in H_2</m>.
The identity is in <m>H_1</m> since <m>\phi(e) = e'</m>.
If <m>a</m> and <m>b</m> are in <m>H_1</m>,
then <m>\phi(ab^{-1}) = \phi(a)[ \phi(b) ]^{-1}</m> is in <m>H_2</m> since <m>H_2</m> is a subgroup of <m>G_2</m>.
Therefore, <m>ab^{-1} \in H_1</m> and <m>H_1</m> is a subgroup of <m>G_1</m>.
</p>
<p>
If <m>H_2</m> is normal in <m>G_2</m>,
we must show that <m>g^{-1} h g \in H_1</m> for
<m>h \in H_1</m> and <m>g \in G_1</m>.
But
<me permid="PyK">
\phi( g^{-1} h g) = [ \phi(g) ]^{-1} \phi( h ) \phi( g ) \in H_2
</me>,
since <m>H_2</m> is a normal subgroup of <m>G_2</m>.
Therefore, <m>g^{-1}hg \in H_1</m>.
</p>
</proof>
</proposition>
<p>
Note that the trivial subgroup consisting only of the identity element is normal.
Together with <xref ref="homomorph-proposition-preimage-subgroup"/> this yields the following theorem,
which says that with every homomorphism of groups we can naturally associate a normal subgroup.
</p>
<theorem permid="Aiv">
<statement>
<p permid="giA">
Let <m>\phi : G \rightarrow H</m> be a group homomorphism.
Then the kernel of <m>\phi</m> is a normal subgroup of <m>G</m>.
</p>
</statement>
</theorem>
<p>
Let <m>G</m> be a group and <m>T</m> be an arbitrary subset.
Then the <term>normal closure</term> of <m>T</m> is the smallest normal subgroup of <m>G</m> that contains <m>T</m>.
Note that this is well-defined as there is always a normal subgroup containing <m>T</m>, at least the group <m>G</m> itself.
</p>
<p>
We list a few insights about the normal closure.
The proof is omitted as this statement is not so central for the course but it gives background on the construction which we will exhibit in <xref ref="generated-groups-and-word-problem"/>.
</p>
<proposition xml:id="proposition-properties-normal-closure">
<statement>
<ol>
<li>
<p>
The normal closure is the intersection of all normal subgroups of <m>G</m> containing <m>T</m>.
</p>
</li>
<li>
<p>
The normal closure is generated by <m>\{g^{-1}tg \mid g \in G, t \in T\}</m> that means that it equals
<me>
\left\{g_1^{-1}t_1^{\sigma_1}g_1g_2^{-1}\dots t_n^{\sigma_n}g_n \mid n \geq 0, g_i \in G, t_i \in T, \sigma_i \in \{1,-1\} \forall i \in \{1,\dots,n\}\right\}.
</me>
</p>
</li>
<!-- <li>
<p>
If <m>T</m> is a subgroup, then the smallest normal subgroup of <m>G</m> containing <m>T</m> is <m>\bigcup_{g \in G} g^{-1}Tg</m>.
</p>
</li> -->
</ol>
</statement>
</proposition>
</section>
<section xml:id="free-and-generated-groups">
<title>Free groups</title>
<p>
The <term>free group</term> on a given set <m>S</m> is formed by all words over the alphabet <m>S</m>, that is all expressions of the form
<me>
s_1^{\sigma_1} \dots s_n^{\sigma_n}
</me>
where <m>s_1,\dots,s_n \in S</m> and <m>\sigma_1,\dots,\sigma_n \in \{-1,1\}</m>.
The binary operation of the group is concatenation of words.
More precisely, the elements of the group are the equivalence classes of words under the identification of subwords <m>x x^{-1}</m> and <m>x^{-1} x</m> for <m>x \in S</m> with the empty word <m>\epsilon</m>.
We will denote the free group by <m>\mathcal{F}(S)</m>.
The neutral element of this group is the empty word <m>\epsilon</m>.
For example, for <m>S = \{a,b\}</m>, the words <m>aa^{-1}</m> or <m>b^{-1}b</m> are in the same equivalence class as <m>\epsilon</m> and the words <m>ab^{-1}aa^{-1}b</m> and <m>aa^{-1}a^{-1}aa</m> are in the same equivalence class as <m>a</m> (among many others).
The proof of the following statement implies that the free group is actually a group.
</p>
<p>
Recall from <xref ref="groups-subsection-subgroup-examples"/> what it means for a group to be generated.
With this, the free group on <m>S</m> is generated by <m>S</m>.
The number of generators of a free group is the <term>rank</term> of the free group.
</p>
<proposition permid="eqn">
<statement>
<p permid="Vzr">
Let <m>H</m> be the subgroup of a group <m>G</m> that is generated by <m>\{ g_i \in G : i \in I \}</m>.
Then <m>h \in H</m> exactly when it is a product of the form
<me permid="vvP">
h = g_{i_1}^{\alpha_1} \cdots g_{i_n}^{\alpha_n}
</me>,
where the <m>g_{i_k}</m>s are not necessarily distinct.
</p>
</statement>
<proof permid="QWC">
<p permid="Pal">
Let <m>K</m> be the set of all products of the form <m>g_{i_1}^{\alpha_1} \cdots g_{i_n}^{\alpha_n}</m>,
where the <m>g_{i_k}</m>s are not necessarily distinct.
Certainly <m>K</m> is a subset of <m>H</m>.
We need only show that <m>K</m> is a subgroup of <m>G</m>.
If this is the case, then <m>K=H</m>,
since <m>H</m> is the smallest subgroup containing all the <m>g_i</m>s.
</p>
<p permid="vhu">
Clearly, the set <m>K</m> is closed under the group operation.
Since <m>g_i^0 = 1</m>, the identity is in <m>K</m>.
It remains to show that the inverse of an element
<m>g =g_{i_1}^{k_1} \cdots g_{i_n}^{k_n}</m> in <m>K</m> must also be in <m>K</m>.
However,
<me permid="bCY">
g^{-1} = (g_{i_1}^{k_{1}} \cdots g_{i_n}^{k_n})^{-1} = (g_{i_n}^{-k_n} \cdots g_{i_{1}}^{-k_{1}})
</me>.
</p>
</proof>
</proposition>
<example>
<p>
The free group on one element <m>a</m> denoted by <m>\mathcal{F}(\{a\})</m> is isomorphic with <m>\mathbb{Z}</m>.
</p>
</example>
<p>
Let <m>G</m> be a group and <m>\{g_s \colon s \in S\} \subseteq G</m> be a subset generating it, e.g., the set of all elements of <m>G</m>.
Then there is a <term>canonical homomorphism</term> such that
<men xml:id="homomorphism-finitely-generated">
s \mapsto g_s
</men>
for all <m>s \in S</m>.
Taking a suitable subset of the elements in the kernel yields a so-called <term>presentation</term> of <m>G</m>.
We will discuss this further in <xref ref="generated-groups-and-word-problem"/>.
</p>
</section>
<!-- <section xml:id="additional-homomorphisms">
<title> Additional insights </title>
<p>
universal property of free group?!?
</p>
<p>
fundamental group, algebraic topology
</p>
</section>
-->
<exercises xml:id="exercises-homomorphism-core" filenamebase="homomorphism">
<title>Core Exercises</title>
<exercise xml:id="exercise-properties-homomorphism-group">
<statement>
<p>
Prove <xref ref="proposition-properties-homomorphism-group"/>.
</p>
</statement>
<solution>
<p permid="etn">
(1) Suppose that <m>e</m> and <m>e'</m> are the identities of <m>G_1</m> and <m>G_2</m>,
respectively; then
<me permid="Xdj">
e' \phi(e) = \phi(e) = \phi(e e) = \phi(e) \phi(e)
</me>.
By cancellation, <m>\phi(e) = e'</m>.
</p>
<p permid="KAw">
(2) This statement follows from the fact that
<me permid="Dks">
\phi( g^{-1}) \phi(g) = \phi(g^{-1} g) = \phi(e) = e'
</me>.
</p>
<p>
(3) This follows by induction from the homomorphism property <m>\phi(g^n)=\phi(g^{n-1}g) = \phi(g^{n-1})\phi(g)=\phi(g)^{n-1}\phi(g)</m>.
</p>
<!-- Corrected notation error. Suggested by P. Diethelm. TWJ 16/8/2013. -->
<p permid="qHF">
(4) The set <m>\phi(H_1)</m> is nonempty since the identity of <m>G_2</m> is in <m>\phi(H_1)</m>.
Suppose that <m>H_1</m> is a subgroup of <m>G_1</m> and let <m>x</m> and <m>y</m> be in <m>\phi(H_1)</m>.
There exist elements <m>a,
b \in H_1</m> such that <m>\phi(a) = x</m> and <m>\phi(b)=y</m>.
Since
<me permid="jrB">
xy^{-1} = \phi(a)[ \phi(b)]^{-1} = \phi(a b^{-1} ) \in \phi(H_1)
</me>,
<m>\phi(H_1)</m> is a subgroup of <m>G_2</m> by <xref ref="groups-proposition-subgroup"/>.
</p>
</solution>
</exercise>
<exercise xml:id="exercise-permutation-matrices">
<statement>
<p>
Consider the map <m>\psi \colon S_3 \to GL_3({\mathbb R})</m> given by
<m>\pi \mapsto M</m>
where
<me>
M_{ij} =
\begin{cases}
1 & \text{ for } i = \pi(j), \\
0 & \text{ otherwise} .
\end{cases}
</me>
For example, one obtains
<me>
\psi\left( (2\,1\,3) \right) =
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix} \enspace .
</me>
<ol>
<li>Determine explicitly the image of <m>\psi</m>. </li>
<li>Show that <m>\psi</m> is a group homomorphism. </li>
<li>What is the kernel of <m>\psi</m>? Is it an isomorphism? </li>
<li>Give a generalization of the statement for <m>S_n</m> for arbirary natural numbers <m>n</m>. </li>
<li>What does the determinant of the image of a permutation say about the permutation?</li>
</ol>
</p>
</statement>
<solution>
<p>
(1) The image has six elements.
Additional to the example above, one gets
<me>
\psi\left( (1) \right) =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
</me>
and
<me>
\psi\left( (12) \right) =
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \enspace .
</me>
The remaining three matrices are obtained analogously.
</p>
<p>
(2) There are essentially two ways to approach this.
Either one can check the homomorphism property for all pairs explicitly or one shows it more abstractly.
The first approach goes through all pairs of elements in <m>S_3</m> like
<me>
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} =
\psi\left( (12) (123) \right) \stackrel{\text{?}}{=}
\psi\left( (1)(23) \right) =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
</me>
and indeed
<me>
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}\enspace .
</me>
Note that one has to check actually <m>6 \cdot 6 = 36</m> pairs then.
For the second approach, let <m>\alpha, \beta \in S_3</m> and <m>j \in \{1,2,3\}</m>.
Then the <m>(i,j)</m>-entry of the matrix <m>\psi(\alpha)\cdot \psi(\beta)</m> is
<me>
\sum_{k=1}^{3} \psi(\alpha)_{ik} \cdot \psi(\beta)_{kj} \enspace .
</me>
Properly checking this expression with the definition of <m>\psi</m> yields the claim.
</p>
<p>
(3) The kernel is <m>\{id\}</m>, it is an isomorphism.
</p>
<p>
(4) Indeed, there is such an isomorphism from <m>S_n</m> to the group of <term>permutation matrices</term> for all positive integers <m>n</m>.
</p>
<p>
Even or odd.
</p>
</solution>
</exercise>
<exercise permid="Trs" xml:id="homomorph-exercise-which-are-homomorph">
<statement>
<p permid="SOP">
Which of the following maps are homomorphisms?
If the map is a homomorphism, what is the kernel?
<ol permid="zMW">
<li permid="kDY">
<p permid="PFO">
<m>\phi : {\mathbb R}^\ast \rightarrow GL_2 ( {\mathbb R})</m> defined by
<me permid="CeZ">
\phi( a ) =
\begin{pmatrix}
1 & 0 \\
0 & a
\end{pmatrix}
</me>
</p>
</li>
<li permid="QLh">
<p permid="vMX">
<m>\phi : {\mathbb R} \rightarrow GL_2 ( {\mathbb R})</m> defined by
<me permid="imi">
\phi( a ) =
\begin{pmatrix}
1 & 0 \\
a & 1
\end{pmatrix}
</me>
</p>
</li>