Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "df7898a3",
"metadata": {},
"outputs": [],
"source": [
"%pip install hausdorff\n",
"%pip install numba\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"import glob\n",
"import numpy as np\n",
"import nibabel as nib\n",
"from ACDCUNet import build_dict_images, build_dict_images_pred\n",
"\n",
"import statistics\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.colors import LinearSegmentedColormap\n",
"from hausdorff import hausdorff_distance"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d744133d",
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"author: Clément Zotti (clement.zotti@usherbrooke.ca)\n",
"date: April 2017\n",
"\n",
"DESCRIPTION :\n",
"The script provide helpers functions to handle nifti image format:\n",
" - load_nii()\n",
" - save_nii()\n",
"\n",
"to generate metrics for two images:\n",
" - metrics()\n",
"\n",
"And it is callable from the command line (see below).\n",
"Each function provided in this script has comments to understand\n",
"how they works.\n",
"\n",
"HOW-TO:\n",
"\n",
"This script was tested for python 3.4.\n",
"\n",
"First, you need to install the required packages with\n",
" pip install -r requirements.txt\n",
"\n",
"After the installation, you have two ways of running this script:\n",
" 1) python metrics.py ground_truth/patient001_ED.nii.gz prediction/patient001_ED.nii.gz\n",
" 2) python metrics.py ground_truth/ prediction/\n",
"\n",
"The first option will print in the console the dice and volume of each class for the given image.\n",
"The second option wiil ouput a csv file where each images will have the dice and volume of each class.\n",
"\n",
"\n",
"Link: http://acdc.creatis.insa-lyon.fr\n",
"\n",
"\"\"\"\n",
"\n",
"HEADER = [\n",
" \"Name\",\n",
" \"Dice LV\",\n",
" \"Volume LV pred\",\n",
" \"Volume LV GT\",\n",
" \"Err LV(ml)\",\n",
" \"Dice RV\",\n",
" \"Volume RV pred\",\n",
" \"Volume RV GT\",\n",
" \"Err RV(ml)\",\n",
" \"Dice MYO\",\n",
" \"Volume MYO pred\",\n",
" \"Volume MYO GT\",\n",
" \"Err MYO(ml)\",\n",
"]\n",
"\n",
"\n",
"#\n",
"# Utils functions used to sort strings into a natural order\n",
"#\n",
"def conv_int(i):\n",
" return int(i) if i.isdigit() else i\n",
"\n",
"\n",
"def natural_order(sord):\n",
" \"\"\"\n",
" Sort a (list,tuple) of strings into natural order.\n",
"\n",
" Ex:\n",
"\n",
" ['1','10','2'] -> ['1','2','10']\n",
"\n",
" ['abc1def','ab10d','b2c','ab1d'] -> ['ab1d','ab10d', 'abc1def', 'b2c']\n",
"\n",
" \"\"\"\n",
" if isinstance(sord, tuple):\n",
" sord = sord[0]\n",
" return [conv_int(c) for c in re.split(r\"(\\d+)\", sord)]\n",
"\n",
"\n",
"#\n",
"# Utils function to load and save nifti files with the nibabel package\n",
"#\n",
"\n",
"img_path = \"ACDC\\database\"\n",
"\n",
"\n",
"def load_nii(img_path):\n",
" \"\"\"\n",
" Function to load a 'nii' or 'nii.gz' file, The function returns\n",
" everyting needed to save another 'nii' or 'nii.gz'\n",
" in the same dimensional space, i.e. the affine matrix and the header\n",
"\n",
" Parameters\n",
" ----------\n",
"\n",
" img_path: string\n",
" String with the path of the 'nii' or 'nii.gz' image file name.\n",
"\n",
" Returns\n",
" -------\n",
" Three element, the first is a numpy array of the image values,\n",
" the second is the affine transformation of the image, and the\n",
" last one is the header of the image.\n",
" \"\"\"\n",
" nimg = nib.load(img_path)\n",
" return nimg.get_fdata(), nimg.affine, nimg.header\n",
"\n",
"\n",
"def save_nii(img_path, data, affine, header):\n",
" \"\"\"\n",
" Function to save a 'nii' or 'nii.gz' file.\n",
"\n",
" Parameters\n",
" ----------\n",
"\n",
" img_path: string\n",
" Path to save the image should be ending with '.nii' or '.nii.gz'.\n",
"\n",
" data: np.array\n",
" Numpy array of the image data.\n",
"\n",
" affine: list of list or np.array\n",
" The affine transformation to save with the image.\n",
"\n",
" header: nib.Nifti1Header\n",
" The header that define everything about the data\n",
" (pleasecheck nibabel documentation).\n",
" \"\"\"\n",
" nimg = nib.Nifti1Image(data, affine=affine, header=header)\n",
" nimg.to_filename(img_path)\n",
"\n",
"\n",
"#\n",
"# Functions to process files, directories and metrics\n",
"#\n",
"def metrics(img_gt, img_pred, voxel_size):\n",
" \"\"\"\n",
" Function to compute the metrics between two segmentation maps given as input.\n",
"\n",
" Parameters\n",
" ----------\n",
" img_gt: np.array\n",
" Array of the ground truth segmentation map.\n",
"\n",
" img_pred: np.array\n",
" Array of the predicted segmentation map.\n",
"\n",
" voxel_size: list, tuple or np.array\n",
" The size of a voxel of the images used to compute the volumes.\n",
"\n",
" Return\n",
" ------\n",
" A list of metrics in this order, [Dice LV, Volume LV, Volume GT, Err LV(ml),\n",
" Dice RV, Volume RV, Volume GT, Err RV(ml), Dice MYO, Volume MYO, Volume GT, Err MYO(ml)]\n",
" \"\"\"\n",
"\n",
" if img_gt.ndim != img_pred.ndim:\n",
" raise ValueError(\n",
" \"The arrays 'img_gt' and 'img_pred' should have the \"\n",
" \"same dimension, {} against {}\".format(img_gt.ndim, img_pred.ndim)\n",
" )\n",
"\n",
" res = []\n",
" # Loop on each classes of the input images\n",
" for c in [3, 1, 2]:\n",
" # Copy the gt image to not alterate the input\n",
" gt_c_i = np.copy(img_gt)\n",
" gt_c_i[gt_c_i != c] = 0\n",
"\n",
" # Copy the pred image to not alterate the input\n",
" pred_c_i = np.copy(img_pred)\n",
" pred_c_i[pred_c_i != c] = 0\n",
"\n",
" # Clip the value to compute the volumes\n",
" gt_c_i = np.clip(gt_c_i, 0, 1)\n",
" pred_c_i = np.clip(pred_c_i, 0, 1)\n",
"\n",
" # Compute the Dice\n",
" # dice = dc(gt_c_i, pred_c_i)\n",
" dice = 1\n",
"\n",
" # Eventueel alternatief\n",
" gt_volume = np.sum(gt_c_i)\n",
" pred_volume = np.sum(pred_c_i)\n",
" intersect = np.sum(gt_c_i * pred_c_i)\n",
" dice = (2 * intersect) / (gt_volume + pred_volume)\n",
"\n",
" # Compute volume\n",
" volpred = pred_c_i.sum() * np.prod(voxel_size) / 1000.0\n",
" volgt = gt_c_i.sum() * np.prod(voxel_size) / 1000.0\n",
"\n",
" res += [dice, volpred, volgt, volpred - volgt]\n",
"\n",
" return res\n",
"\n",
"\n",
"def compute_metrics_on_files(path_gt, path_pred):\n",
" \"\"\"\n",
" Function to give the metrics for two files\n",
"\n",
" Parameters\n",
" ----------\n",
"\n",
" path_gt: string\n",
" Path of the ground truth image.\n",
"\n",
" path_pred: string\n",
" Path of the predicted image.\n",
" \"\"\"\n",
" gt, _, header = load_nii(path_gt)\n",
" pred, _, _ = load_nii(path_pred)\n",
" zooms = header.get_zooms()\n",
"\n",
" name = os.path.basename(path_gt)\n",
" name = name.split(\".\")[0]\n",
" res = metrics(gt, pred, zooms)\n",
" res = [\"{:.3f}\".format(r) for r in res]\n",
"\n",
" formatting = \"{:<20}\" + \"{:>12}\" * len(res)\n",
" output = formatting.format(name, *res)\n",
"\n",
" print(formatting.format(*HEADER))\n",
" print(output)\n",
"\n",
" # formatting = \"{:>14}, {:>7}, {:>9}, {:>10}, {:>7}, {:>9}, {:>10}, {:>8}, {:>10}, {:>11}\"\n",
" # print(formatting.format(*HEADER))\n",
" # print(formatting.format(name, *res))\n",
"\n",
" # return [name, *res]\n",
" return res\n",
"\n",
"\n",
"def compute_metrics_on_directories(dir_gt, dir_pred):\n",
" \"\"\"\n",
" Function to generate a csv file for each images of two directories.\n",
"\n",
" Parameters\n",
" ----------\n",
"\n",
" path_gt: string\n",
" Directory of the ground truth segmentation maps.\n",
"\n",
" path_pred: string\n",
" Directory of the predicted segmentation maps.\n",
" \"\"\"\n",
" lst_gt = sorted(glob(os.path.join(dir_gt, \"*\")), key=natural_order)\n",
" lst_pred = sorted(glob(os.path.join(dir_pred, \"*\")), key=natural_order)\n",
"\n",
" res = []\n",
" for p_gt, p_pred in zip(lst_gt, lst_pred):\n",
" if os.path.basename(p_gt) != os.path.basename(p_pred):\n",
" raise ValueError(\n",
" \"The two files don't have the same name\"\n",
" \" {}, {}.\".format(os.path.basename(p_gt), os.path.basename(p_pred))\n",
" )\n",
"\n",
" gt, _, header = load_nii(p_gt)\n",
" pred, _, _ = load_nii(p_pred)\n",
" zooms = header.get_zooms()\n",
" res.append(metrics(gt, pred, zooms))\n",
"\n",
" lst_name_gt = [os.path.basename(gt).split(\".\")[0] for gt in lst_gt]\n",
" res = [\n",
" [\n",
" n,\n",
" ]\n",
" + r\n",
" for r, n in zip(res, lst_name_gt)\n",
" ]\n",
" df = pd.DataFrame(res, columns=HEADER)\n",
" df.to_csv(\"results_{}.csv\".format(time.strftime(\"%Y%m%d_%H%M%S\")), index=False)\n",
"\n",
"\n",
"def main(path_gt, path_pred):\n",
" \"\"\"\n",
" Main function to select which method to apply on the input parameters.\n",
" \"\"\"\n",
" if os.path.isfile(path_gt) and os.path.isfile(path_pred):\n",
" compute_metrics_on_files(path_gt, path_pred)\n",
" elif os.path.isdir(path_gt) and os.path.isdir(path_pred):\n",
" compute_metrics_on_directories(path_gt, path_pred)\n",
" else:\n",
" raise ValueError(\"The paths given needs to be two directories or two files.\")\n",
"\n",
"\n",
"# if __name__ == \"__main__\":\n",
"# parser = argparse.ArgumentParser(\n",
"# description=\"Script to compute ACDC challenge metrics.\")\n",
"# parser.add_argument(\"GT_IMG\", type=str, help=\"Ground Truth image\")\n",
"# parser.add_argument(\"PRED_IMG\", type=str, help=\"Predicted image\")\n",
"# args = parser.parse_args()\n",
"# main(args.GT_IMG, args.PRED_IMG)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "142caccb",
"metadata": {},
"outputs": [],
"source": [
"# Testing\n",
"path_gt = os.path.join('ACDC','database','testing','patient101','patient101_frame01.nii.gz')\n",
"dir_gt = os.path.join('ACDC','database','testing','patient101','patient101_frame01_gt.nii.gz')\n",
"\n",
"path_pred = os.path.join('ACDC','database','testing','patient101','patient101_frame01.nii.gz')\n",
"dir_pred = os.path.join('ACDC','database','testing','patient101','patient101_frame01_ml_pred.nii.gz')\n",
"\n",
"test_files = compute_metrics_on_files(dir_gt, dir_pred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0451a847",
"metadata": {},
"outputs": [],
"source": [
"data_path = \"ACDC/database\"\n",
"test_dict_gt = build_dict_images(data_path, mode='testing').ravel()\n",
"test_dict_pred = build_dict_images_pred(data_path, mode='testing')\n",
"\n",
"# Ground truth\n",
"# First file\n",
"print(len(test_dict_gt))\n",
"image_paths_gt_ED = [d['image'] for d in test_dict_gt if d[\"first_file\"]]\n",
"label_paths_gt_ED = [d['label'] for d in test_dict_gt if d[\"first_file\"]]\n",
"\n",
"# Last file\n",
"image_paths_gt_ES = [d['image'] for d in test_dict_gt if not d[\"first_file\"]]\n",
"label_paths_gt_ES = [d['label'] for d in test_dict_gt if not d[\"first_file\"]]\n",
"\n",
"print('Image path gt ED is ', image_paths_gt_ED) \n",
"print('Label path gt ED is ', label_paths_gt_ED)\n",
"print('Image path gt ES is ', image_paths_gt_ES)\n",
"print('Label path gt ES is ', label_paths_gt_ES)\n",
"\n",
"# Prediction\n",
"image_paths_pred_ED = [d['image'] for d in test_dict_pred if d[\"first_file\"]]\n",
"label_paths_pred_ED = [d['label'] for d in test_dict_pred if d[\"first_file\"]]\n",
"\n",
"image_paths_pred_ES = [d['image'] for d in test_dict_pred if not d[\"first_file\"]]\n",
"label_paths_pred_ES = [d['label'] for d in test_dict_pred if not d[\"first_file\"]]\n",
"\n",
"print('Image path prediction ED is ', image_paths_pred_ED)\n",
"print('Label path prediction ED is ', label_paths_pred_ED)\n",
"print('Image path prediction ES is ', image_paths_pred_ES)\n",
"print('Label path prediction ES is ', label_paths_pred_ES)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c7be742",
"metadata": {},
"outputs": [],
"source": [
"test_files_ED = [compute_metrics_on_files(label_paths_gt_ED[i], label_paths_pred_ED[i]) for i in range(len(label_paths_gt_ED))]\n",
"test_files_ES = [compute_metrics_on_files(label_paths_gt_ES[i], label_paths_pred_ES[i]) for i in range(len(label_paths_gt_ES))]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "049a0262",
"metadata": {},
"outputs": [],
"source": [
"# ED\n",
"LV_GT_ED = np.array([float(metric[2]) for metric in test_files_ED])\n",
"LV_pred_ED = np.array([float(metric[1]) for metric in test_files_ED])\n",
"LV_dice_ED = np.array([float(metric[0]) for metric in test_files_ED])\n",
"LV_err_ED = np.array([float(metric[3]) for metric in test_files_ED])\n",
"\n",
"RV_GT_ED = np.array([float(metric[6]) for metric in test_files_ED])\n",
"RV_pred_ED = np.array([float(metric[5]) for metric in test_files_ED])\n",
"RV_dice_ED = np.array([float(metric[4]) for metric in test_files_ED])\n",
"RV_err_ED = np.array([float(metric[7]) for metric in test_files_ED])\n",
"\n",
"MYO_GT_ED = np.array([float(metric[10]) for metric in test_files_ED])\n",
"MYO_pred_ED = np.array([float(metric[9]) for metric in test_files_ED])\n",
"MYO_dice_ED = np.array([float(metric[8]) for metric in test_files_ED])\n",
"MYO_err_ED = np.array([float(metric[11]) for metric in test_files_ED])\n",
"\n",
"# ES\n",
"LV_GT_ES = np.array([float(metric[2]) for metric in test_files_ES])\n",
"LV_pred_ES = np.array([float(metric[1]) for metric in test_files_ES])\n",
"LV_dice_ES = np.array([float(metric[0]) for metric in test_files_ES])\n",
"LV_err_ES = np.array([float(metric[3]) for metric in test_files_ES])\n",
"\n",
"RV_GT_ES = np.array([float(metric[6]) for metric in test_files_ES])\n",
"RV_pred_ES = np.array([float(metric[5]) for metric in test_files_ES])\n",
"RV_dice_ES = np.array([float(metric[4]) for metric in test_files_ES])\n",
"RV_err_ES = np.array([float(metric[7]) for metric in test_files_ES])\n",
"\n",
"MYO_GT_ES = np.array([float(metric[10]) for metric in test_files_ES])\n",
"MYO_pred_ES = np.array([float(metric[9]) for metric in test_files_ES])\n",
"MYO_dice_ES = np.array([float(metric[8]) for metric in test_files_ES])\n",
"MYO_err_ES = np.array([float(metric[11]) for metric in test_files_ES])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7c36b2e0",
"metadata": {},
"source": [
"Other ways for visualization\n",
"> Comparison graphs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fd62eb7",
"metadata": {},
"outputs": [],
"source": [
"def show_comparison_graph(gt, pred, dice, err, color_boundaries=20, part=\"LV\", mode=\"ED\"):\n",
" plt.clf()\n",
" vmin = min(err)\n",
" vmax = max(err)\n",
"\n",
" colors = ['red', 'yellow', 'green', 'yellow', 'red']\n",
" color_positions = [vmin, -1 * color_boundaries, 0, color_boundaries, vmax]\n",
" norm = plt.Normalize(vmin, vmax)\n",
" print(norm(color_positions))\n",
"\n",
" colormap = list(zip(norm(color_positions), colors))\n",
" cmap = LinearSegmentedColormap.from_list(\"custom_cmap\", colormap)\n",
"\n",
" plt.scatter(gt, pred, c=err, cmap=cmap, vmin=vmin, vmax=vmax, s=dice * 100)\n",
" plt.plot([min(gt), max(gt)], [min(gt), max(gt)], 'k--')\n",
" plt.xlabel(f'Ground Truth {part} Volume [ml]')\n",
" plt.ylabel(f'Predicted {part} Volume [ml]')\n",
" plt.title(f'Ground Truth vs. Predicted Volume of {part} {mode}')\n",
"\n",
" cbar = plt.colorbar()\n",
" cbar.set_label('Error Value')\n",
"\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1541570e",
"metadata": {},
"outputs": [],
"source": [
"show_comparison_graph(LV_GT_ED, LV_pred_ED, LV_dice_ED, LV_err_ED)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "93c71590",
"metadata": {},
"outputs": [],
"source": [
"show_comparison_graph(RV_GT_ED, RV_pred_ED, RV_dice_ED, RV_err_ED, color_boundaries=18, part=\"RV\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa1aa317",
"metadata": {},
"outputs": [],
"source": [
"show_comparison_graph(MYO_GT_ED, MYO_pred_ED, MYO_dice_ED, MYO_err_ED, color_boundaries=18, part=\"MYO\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5b91e382",
"metadata": {},
"source": [
"> Correlations"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a21ffc52",
"metadata": {},
"outputs": [],
"source": [
"# Correlation coefficients\n",
"def calculate_correlation(gt, pred, err):\n",
" gt_mean = statistics.mean(gt)\n",
" gt_std = statistics.stdev(gt)\n",
" pred_mean = statistics.mean(pred)\n",
" pred_std = statistics.stdev(pred)\n",
" covariance = sum((x - gt_mean) * (y - pred_mean) for x, y in zip(gt, pred)) / len(gt)\n",
" corr = covariance / (gt_std * pred_std)\n",
" bias = statistics.mean(err)\n",
" err_std = statistics.stdev(err)\n",
" loa = 1.96*err_std\n",
" return corr, bias, loa"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a4ecf214",
"metadata": {},
"outputs": [],
"source": [
"LV_corr, LV_bias, LV_LOA = calculate_correlation(LV_GT_ED, LV_pred_ED, LV_err_ED)\n",
"print('The correlation coefficient for left ventricle EDV is ', LV_corr)\n",
"print('The bias for the left ventricle EDV is ', LV_bias)\n",
"print('The LOA of the left ventricle EDV is ', LV_LOA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12c061d2",
"metadata": {},
"outputs": [],
"source": [
"RV_corr, RV_bias, RV_LOA = calculate_correlation(RV_GT_ED, RV_pred_ED, RV_err_ED)\n",
"print('The correlation coefficient for right ventricle EDV is ', RV_corr)\n",
"print('The bias for the right ventricle EDV is ', RV_bias)\n",
"print('The LOA of the right ventricle EDV is ', RV_LOA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ccb53139",
"metadata": {},
"outputs": [],
"source": [
"MYO_corr, MYO_bias, MYO_LOA = calculate_correlation(MYO_GT_ED, MYO_pred_ED, MYO_err_ED)\n",
"print('The correlation coefficient for myocardium EDV is ', MYO_corr)\n",
"print('The bias for the left myocardium EDV is ', MYO_bias)\n",
"print('The LOA of the left myocardium EDV is ', MYO_LOA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d85b01dd",
"metadata": {},
"outputs": [],
"source": [
"# Average dice\n",
"\n",
"av_LV_dice = statistics.mean(LV_dice_ED)\n",
"av_RV_dice = statistics.mean(RV_dice_ED)\n",
"av_MYO_dice = statistics.mean(MYO_dice_ED)\n",
"print('Average dice left ventricle is ', av_LV_dice)\n",
"print('Average dice right ventricle is ', av_RV_dice)\n",
"print('Average dice myocardium is ', av_MYO_dice)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ce64f7e5",
"metadata": {},
"source": [
"ES"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "437c2b32",
"metadata": {},
"outputs": [],
"source": [
"show_comparison_graph(LV_GT_ES, LV_pred_ES, LV_dice_ES, LV_err_ES, color_boundaries=15, part=\"LV\", mode=\"ES\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ff66a64",
"metadata": {},
"outputs": [],
"source": [
"show_comparison_graph(RV_GT_ES, RV_pred_ES, RV_dice_ES, RV_err_ES, color_boundaries=10, part=\"RV\", mode=\"ES\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "931d0abb",
"metadata": {},
"outputs": [],
"source": [
"show_comparison_graph(MYO_GT_ES, MYO_pred_ES, MYO_dice_ES, MYO_err_ES, color_boundaries=30, part=\"MYO\", mode=\"ES\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d30933c",
"metadata": {},
"outputs": [],
"source": [
"LV_corr, LV_bias, LV_LOA = calculate_correlation(LV_GT_ES, LV_pred_ES, LV_err_ES)\n",
"print('The correlation coefficient for left ventricle ESV is ', LV_corr)\n",
"print('The bias for the left ventricle ESV is ', LV_bias)\n",
"print('The LOA of the left ventricle ESV is ', LV_LOA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "823112fe",
"metadata": {},
"outputs": [],
"source": [
"RV_corr, RV_bias, RV_LOA = calculate_correlation(RV_GT_ES, RV_pred_ES, RV_err_ES)\n",
"print('The correlation coefficient for right ventricle ESV is ', RV_corr)\n",
"print('The bias for the right ventricle ESV is ', RV_bias)\n",
"print('The LOA of the right ventricle ESV is ', RV_LOA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50408bf1",
"metadata": {},
"outputs": [],
"source": [
"MYO_corr, MYO_bias, MYO_LOA = calculate_correlation(MYO_GT_ES, MYO_pred_ES, MYO_err_ES)\n",
"print('The correlation coefficient for myocardium ESV is ', MYO_corr)\n",
"print('The bias for the left myocardium ESV is ', MYO_bias)\n",
"print('The LOA of the left myocardium ESV is ', MYO_LOA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf0f0d91",
"metadata": {},
"outputs": [],
"source": [
"# Average dice\n",
"av_LV_dice = statistics.mean(LV_dice_ES)\n",
"av_RV_dice = statistics.mean(RV_dice_ES)\n",
"av_MYO_dice = statistics.mean(MYO_dice_ES)\n",
"print('Average dice left ventricle ESV is ', av_LV_dice)\n",
"print('Average dice right ventricle ESV is ', av_RV_dice)\n",
"print('Average dice myocardium ESV is ', av_MYO_dice)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ecf8346f",
"metadata": {},
"source": [
"EJ"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1671753",
"metadata": {},
"outputs": [],
"source": [
"EJ_LV_GT = [((LV_GT_ED[i] - LV_GT_ES[i])/ LV_GT_ED[i]) * 100 for i in range(len(LV_GT_ED))]\n",
"EJ_RV_GT = [((RV_GT_ED[i] - RV_GT_ES[i])/ RV_GT_ED[i]) * 100 for i in range(len(RV_GT_ED))]\n",
"\n",
"EJ_LV_pred = [((LV_pred_ED[i] - LV_pred_ES[i])/ (LV_pred_ED[i]+0.1)) * 100 for i in range(len(LV_pred_ED))]\n",
"EJ_RV_pred = [((RV_pred_ED[i] - RV_pred_ES[i])/ (RV_pred_ED[i]+0.1)) * 100 for i in range(len(RV_pred_ED))]\n",
"\n",
"EJ_LV_err = [EJ_LV_GT[i] - EJ_LV_pred[i] for i in range(len(EJ_LV_GT))]\n",
"EJ_RV_err = [EJ_RV_GT[i] - EJ_RV_pred[i] for i in range(len(EJ_RV_GT))]\n",
"\n",
"EJ_LV_corr, EJ_LV_bias, LV_LOA = calculate_correlation(EJ_LV_GT, EJ_LV_pred, EJ_LV_err)\n",
"print('The correlation of the ejection fraction for left ventricle is ', EJ_LV_corr)\n",
"print('The mean bias of the ejection fraction of left ventricle is ', EJ_LV_bias)\n",
"print('The LOA of the ejection fraction of the left ventricle is ', LV_LOA)\n",
"\n",
"EJ_RV_corr, EJ_RV_bias, RV_LOA = calculate_correlation(EJ_RV_GT, EJ_RV_pred, EJ_RV_err)\n",
"print('The correlation of the ejection fraction for right ventricle is ', EJ_RV_corr)\n",
"print('The mean bias of the ejection fraction of right ventricle is ', EJ_RV_bias)\n",
"print('The LOA of the ejection fraction of the right ventricle is ', RV_LOA)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "de9c181c",
"metadata": {},
"source": [
"Best and worst results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c9a463de",
"metadata": {},
"outputs": [],
"source": [
"# This determines the best and worst performing predictions based on the dice score of all the segments and both time frames\n",
"# Uses the LV_dice_ES list to find back the correct patient, but could be any of the lists\n",
"\n",
"\n",
"score_sum = {LV_dice_ES[x]: sum([LV_dice_ES[x], RV_dice_ES[x], MYO_dice_ES[x], LV_dice_ED[x], RV_dice_ED[x], MYO_dice_ED[x]]) for x in range(len(LV_dice_ES))}\n",
"max_value = max(score_sum, key=score_sum.get)\n",
"min_value = min(score_sum, key=score_sum.get)\n",
"print(min_value)\n",
"del score_sum[min_value]\n",
"\n",
"min_value = min(score_sum, key=score_sum.get)\n",
"print(min_value)\n",
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
"\n",
"max_index = np.where(LV_dice_ES == max_value)[0][0]\n",
"min_index = np.where(LV_dice_ES == min_value)[0][0]\n",
"\n",
"print(\"Max value:\", max_value)\n",
"print(\"Max index:\", max_index)\n",
"\n",
"print(\"Min value:\", min_value)\n",
"print(\"Min index:\", min_index)\n",
"\n",
"# Show slices"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ef0ed36",
"metadata": {},
"outputs": [],
"source": [
"print('Best image path gt ES is ', image_paths_gt_ES[max_index])\n",
"print('Best label path gt ES is ', label_paths_gt_ES[max_index])\n",
"\n",
"print('Best image path prediction ES is ', image_paths_pred_ES[max_index])\n",
"print('Best label path prediction ES is ', label_paths_pred_ES[max_index])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35b72c7c",
"metadata": {},
"outputs": [],
"source": [
"def get_slice(index, image_gt, label_gt, image_pred, label_pred, channel_index=0, frame='ES'):\n",
" image_path_gt = image_gt[index]\n",
" label_path_gt = label_gt[index]\n",
" image_path_pred = image_pred[index]\n",
" label_path_pred = label_pred[index]\n",
"\n",
" # Load image and label data\n",
" image_gt = nib.load(image_path_gt).get_fdata()\n",
" label_gt_ES = nib.load(label_path_gt).get_fdata()\n",
" image_pred = nib.load(image_path_pred).get_fdata()\n",
" label_pred = nib.load(label_path_pred).get_fdata()\n",
" return (\n",
" [\n",
" image_gt[..., channel_index],\n",
" label_gt_ES[..., channel_index],\n",
" image_pred[..., channel_index],\n",
" label_pred[..., channel_index]\n",
" ]\n",
" )\n",
"def display_slices(min_index, max_index, image_gt, label_gt, image_pred, label_pred, channel_index=0, frame='ES'):\n",
" best_image_gt_ES_channel, best_label_gt_ES_channel, best_image_pred_ES_channel, best_label_pred_ES_channel = get_slice(max_index, image_gt, label_gt, image_pred, label_pred, channel_index)\n",
" worst_image_gt_ES_channel, worst_label_gt_ES_channel, worst_image_pred_ES_channel, worst_label_pred_ES_channel = get_slice(min_index, image_gt, label_gt, image_pred, label_pred, channel_index)\n",
"\n",
" plt.subplot(2, 2, 1)\n",
" plt.imshow(best_image_gt_ES_channel, cmap='gray')\n",
" plt.title(f\"Ground truth best prediction {frame}\")\n",
" plt.imshow(best_label_gt_ES_channel, alpha=0.5, cmap='Reds')\n",
"\n",
"\n",
" plt.subplot(2, 2, 2)\n",
" plt.imshow(best_image_pred_ES_channel, cmap='gray')\n",
" plt.title(f\"Best prediction {frame}\")\n",
" plt.imshow(best_label_pred_ES_channel, cmap='Reds', alpha=0.5)\n",
"\n",
" plt.subplot(2, 2, 3)\n",
" plt.imshow(worst_image_gt_ES_channel, cmap='gray')\n",
" plt.title(f\"Ground truth worst prediction {frame}\")\n",
" plt.imshow(worst_label_gt_ES_channel, alpha=0.5, cmap='Reds')\n",
"\n",
" plt.subplot(2, 2, 4)\n",
" plt.imshow(worst_image_pred_ES_channel, cmap='gray')\n",
" plt.title(f\"Worst prediction {frame}\")\n",
" plt.imshow(worst_label_pred_ES_channel, cmap='Reds', alpha=0.5)\n",
" plt.tight_layout()\n",
" plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8074a3d4",
"metadata": {},
"outputs": [],
"source": [
"display_slices(min_index, max_index, image_paths_gt_ES, label_paths_gt_ES, image_paths_pred_ES, label_paths_pred_ES, channel_index=4, frame='ES')\n",
"compute_metrics_on_files(label_paths_gt_ED[max_index], label_paths_pred_ED[max_index])\n",
"compute_metrics_on_files(label_paths_gt_ES[max_index], label_paths_pred_ES[max_index])\n",
"print()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2d5604a",
"metadata": {},
"outputs": [],
"source": [
"display_slices(min_index, max_index, image_paths_gt_ED, label_paths_gt_ED, image_paths_pred_ED, label_paths_pred_ED, channel_index=4, frame='ED')\n",
"compute_metrics_on_files(label_paths_gt_ED[min_index], label_paths_pred_ED[min_index])\n",
"compute_metrics_on_files(label_paths_gt_ES[min_index], label_paths_pred_ES[min_index])\n",
"print()"
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c4ee1d4a",
"metadata": {},
"source": [
"Hausdorff distances"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a633891f",
"metadata": {},
"outputs": [],
"source": [
"# First file\n",
"label_paths_gt_ED = [d['label'] for d in test_dict_gt if d[\"first_file\"]]\n",
"print(len(label_paths_gt_ED))\n",
"\n",
"# Last file\n",
"label_paths_gt_ES = [d['label'] for d in test_dict_gt if not d[\"first_file\"]]\n",
"\n",
"# Prediction\n",
"label_paths_pred_ED = [d['label'] for d in test_dict_pred if d[\"first_file\"]]\n",
"\n",
"label_paths_pred_ES = [d['label'] for d in test_dict_pred if not d[\"first_file\"]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f3a8a4e0",
"metadata": {},
"outputs": [],
"source": [
"# GT and pred of ED\n",
"dir_gt_ED = []\n",
"dir_pred_ED = []\n",
"for label_path_gt_ED, label_path_pred_ED in zip(label_paths_gt_ED, label_paths_pred_ED):\n",
" label_GT_ED = nib.load(label_path_gt_ED).get_fdata()\n",
" label_pred_ED = nib.load(label_path_pred_ED).get_fdata()\n",
" dir_gt_ED.append(label_GT_ED)\n",
" dir_pred_ED.append(label_pred_ED)\n",
"\n",
"# GT and pred of ES\n",
"dir_gt_ES = []\n",
"dir_pred_ES = []\n",
"for label_path_gt, label_path_pred in zip(label_paths_gt_ES, label_paths_pred_ES):\n",
" label_GT_ES = nib.load(label_path_gt).get_fdata()\n",
" label_pred = nib.load(label_path_pred).get_fdata()\n",
" dir_gt_ES.append(label_GT_ES)\n",
" dir_pred_ES.append(label_pred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "106f8cb8",
"metadata": {},
"outputs": [],
"source": [
"label_gt_ED = []\n",
"label_gt_ED_LV = []\n",
"label_gt_ED_wall = []\n",
"label_gt_ED_RV = []\n",
"\n",
"for i in range(50):\n",
" label_gt_ED_single = np.array(dir_gt_ED[i], dtype=np.float32)\n",
" label_gt_ED.append(label_gt_ED_single)\n",
" label_gt_ED_LV.append(np.where(label_gt_ED_single == 1,1,0))\n",
" label_gt_ED_wall.append(np.where(label_gt_ED_single == 2,1,0))\n",
" label_gt_ED_RV.append(np.where(label_gt_ED_single == 3,1,0))\n",
"\n",
"\n",
"label_pred_ED = []\n",
"label_pred_ED_LV = []\n",
"label_pred_ED_wall = []\n",
"label_pred_ED_RV = []\n",
"\n",
"for i in range(50):\n",
" label_pred_ED_single = np.array(dir_pred_ED[i], dtype=np.float32)\n",
" label_pred_ED.append(label_pred_ED_single)\n",
" label_pred_ED_LV.append(np.where(label_pred_ED_single == 1,1,0))\n",
" label_pred_ED_wall.append(np.where(label_pred_ED_single == 2,1,0))\n",
" label_pred_ED_RV.append(np.where(label_pred_ED_single == 3,1,0))\n",
"\n",
"label_gt_ES = []\n",
"label_gt_ES_LV = []\n",
"label_gt_ES_wall = []\n",
"label_gt_ES_RV = []\n",
"\n",
"for i in range(50):\n",
" label_gt_ES_single = np.array(dir_gt_ES[i], dtype=np.float32)\n",
" label_gt_ES.append(label_gt_ES_single)\n",
" label_gt_ES_LV.append(np.where(label_gt_ES_single == 1,1,0))\n",
" label_gt_ES_wall.append(np.where(label_gt_ES_single == 2,1,0))\n",
" label_gt_ES_RV.append(np.where(label_gt_ES_single == 3,1,0))\n",
"\n",
"\n",
"label_pred = []\n",
"label_pred_ES_LV = []\n",
"label_pred_ES_wall = []\n",
"label_pred_ES_RV = []\n",
"\n",
"for i in range(50):\n",
" label_pred_ES_single = np.array(dir_pred_ES[i], dtype=np.float32)\n",
" label_pred.append(label_pred_ES_single)\n",
" label_pred_ES_LV.append(np.where(label_pred_ES_single == 1,1,0))\n",
" label_pred_ES_wall.append(np.where(label_pred_ES_single == 2,1,0))\n",
" label_pred_ES_RV.append(np.where(label_pred_ES_single == 3,1,0))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "385e0f03",
"metadata": {},
"outputs": [],
"source": [
"print(len(label_pred_ES_RV))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9a682e84",
"metadata": {},
"outputs": [],
"source": [
"hd_LV_ED = []\n",
"hd_wall_ED = []\n",
"hd_RV_ED = []\n",
"hd_LV_ES = []\n",
"hd_wall_ES = []\n",
"hd_RV_ES = []\n",
"\n",
"for i in range(50):\n",
" # Calculate Hausdorff distance for ED\n",
" hd_lv_ed = max([hausdorff_distance(label_pred_ED_LV[i][:,:,y], label_gt_ED_LV[i][:,:,y], distance='euclidean') for y in range(label_pred_ED_LV[i].shape[2])])\n",
" hd_wall_ed = max([hausdorff_distance(label_pred_ED_wall[i][:,:,y], label_gt_ED_wall[i][:,:,y], distance='euclidean') for y in range(label_pred_ED_wall[i].shape[2])])\n",
" hd_rv_ed = max([hausdorff_distance(label_pred_ED_RV[i][:,:,y], label_gt_ED_RV[i][:,:,y], distance='euclidean') for y in range(label_pred_ED_RV[i].shape[2])])\n",
" hd_LV_ED.append(hd_lv_ed)\n",
" hd_wall_ED.append(hd_wall_ed)\n",
" hd_RV_ED.append(hd_rv_ed)\n",